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Abstract: We examine the sources of macroeconomic economic fluctuations by estimating a variety of 
medium-scale dynamic stochastic general equilibrium (DSGE) models within a unified framework that 
incorporates regime switching both in shock variances and in the inflation target. Our general framework 
includes a number of different model features studied in the literature. We propose an efficient 
methodology for estimating regime-switching DSGE models. The model that best fits the U.S. time-series 
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SOURCES OF MACROECONOMIC FLUCTUATIONS 1I. Introdu
tionWe examine the sour
es of ma
roe
onomi
 �u
tuations by estimating a number ofregime-swit
hing models using modern Bayesian te
hniques in a uni�ed dynami
 sto-
hasti
 general equilibrium (DSGE) framework. The standard approa
h to analyzingbusiness-
y
le �u
tuations is the use of 
onstant-parameter medium-s
ale DSGE mod-els (Altig, Christiano, Ei
henbaum, and Linde, 2004; Christiano, Ei
henbaum, andEvans, 2005; Levin, Onatski, Williams, and Williams, 2006; Smets and Wouters, 2007;Del Negro, S
horfheide, Smets, and Wouters, 2007). In this paper we generalize thestandard approa
h by allowing time variations in sho
k varian
es and in the 
entralbank's in�ation target a

ording to Markov-swit
hing pro
esses. These time variationsappear to be present in the U.S. ma
roe
onomi
 time series. An important question ishow signi�
ant the time variations are when we �t the data to relatively large DSGEmodels with ri
h dynami
 stru
tures and sho
k pro
esses that are e
onomi
ally inter-pretable. If the answer is positive, the next equation is in what dimension the timevariations matter. To answer these questions, we estimate a number of alternativemodels nested in this general framework using the Bayesian method and we 
omparethe �t of these models to the time series data in the postwar U.S. e
onomy. The best-�t model is then used to identify sho
ks that are important in driving ma
roe
onomi
�u
tuations.Our approa
h yields several new results. We �nd strong empiri
al eviden
e in favorof the DSGE model with two regimes in sho
k varian
es, where regime shifts in thevarian
es are syn
hronized. The models with 
onstant parameters (i.e., no regimeshifts), with independent regime shifts in sho
k varian
es, or with more than tworegimes do not �t to the data as well. In our preferred model (i.e., the best-�t model)with two syn
hronized sho
k regimes, the high-volatility regime was frequently observedin the period from the early 1970s through the mid-1980s, while the low-volatilityregime prevailed in most of the period from the mid-1980s through 2007. This �ndingis broadly 
onsistent with the well-known fa
t that the U.S. e
onomy experien
ed ageneral redu
tion in ma
roe
onomi
 volatilities during the latter sample period (Sto
kand Watson, 2003).The �t of our preferred regime-swit
hing DSGE model does not reply on strongnominal rigidities. In parti
ular, our estimates imply that the durations of the pri
eand nominal wage 
ontra
ts last no more than 2 quarters of a year�mu
h shorter thanthose reported in the 
onstant-parameter DSGE models in previous studies (Smets andWouters, 2007). This �nding highlights the sensitivity of the estimates of some key



SOURCES OF MACROECONOMIC FLUCTUATIONS 2stru
tural parameters obtained in models with no regime swit
hing to spe
i�
ations ofthe sho
k pro
esses. When we allow the sho
k varian
es to swit
h regimes, the modelrelies less on nominal rigidities to �t to the data.Neither does the �t of our preferred model reply on regime shifts in the in�ation tar-get. Allowing the in�ation target to shift between two regimes�either syn
hronizedwith or independent of the sho
k regime swit
hing�does not improve the model's mar-ginal data density. This �nding is robust to a variety of model spe
i�
ations and it is
onsistent with the 
on
lusion from other works about 
hanges in monetary poli
y ingeneral (Sto
k and Watson, 2003; Canova and Gambetti, 2004; Cogley and Sargent,2005; Primi
eri, 2005; Sims and Zha, 2006; Justiniano and Primi
eri, 2008). We fo
uson studying 
hanges in the in�ation target instead of 
hanges in monetary poli
y'sresponse to in�ation for both 
on
eptual and 
omputational reasons. When agentstake into a

ount 
hanges in monetary poli
y's response to in�ation in forming theirexpe
tations, a solution method to the model is nonstandard (Liu, Waggoner, and Zha,2009). Indeed, it would be 
omputationally infeasible for us to estimate a large set ofDSGE models like what we do in the 
urrent paper sin
e the solution would require aniterative algorithm that 
an be time-
onsuming in Monte Carlo simulations. Further-more, indetermina
y is more prevalent in this kind of regime-swit
hing model than inthe standard DSGE model (Farmer, Waggoner, and Zha, 2009). For these reasons, wefollow S
horfheide (2005) and Ireland (2005) and fo
us on examining 
hanges in thein�ation target to give the model the best 
han
e to dete
t 
hanges in monetary poli
y.Although we 
an apply the standard method to solving our regime-swit
hing DSGEmodels (as shown in Se
tion V), we have nonetheless pushed the limits of our 
ompu-tational and analyti
al 
apa
ity be
ause of a large set of regime-swit
hing models wehave estimated.In the best-�t model, we identify three types of sho
ks that are important for ma
roe-
onomi
 �u
tuations. These are a sho
k to the growth rate of the total fa
tor produ
-tivity (TFP), a sho
k to wage markups, and a sho
k to the 
apital depre
iation rate.Taken together, these three sho
ks a

ount for about 70−80% of the varian
es of aggre-gate output, investment, and in�ation at business 
y
le frequen
ies. Other sho
ks su
has monetary poli
y sho
ks, investment-spe
i�
 te
hnology sho
ks, and pri
e markupsho
ks are not as important. The TFP sho
ks and the wage markup sho
ks should befamiliar to a student of the DSGE literature, but the 
apital depre
iation sho
k is new.We provide some e
onomi
 interpretations of the depre
iation sho
k in Se
tion VII.3.



SOURCES OF MACROECONOMIC FLUCTUATIONS 3In what follows, we brie�y dis
uss our 
ontributions in relation to the literaturein Se
tion II. We then present, in Se
tion III, the general regime-swit
hing DSGEframework. In Se
tion IV, we present the system of equilibrium 
onditions and dis
ussour solution methods. In Se
tion V, we des
ribe the data and our empiri
al approa
h.As a methodologi
al 
ontribution, we propose an e�
ient methodology for estimatingregime-swit
hing DSGE models; we summarize and dis
uss several modern methodsfor obtaining a

urate estimates of marginal data densities for relatively large DSGEmodels. In Se
tion VI, we 
ompare the �t of a number of models nested by our generalDSGE framework, identify the best-�t model, and report posterior estimates of theparameters in this model. In Se
tion VII, we dis
uss the e
onomi
 impli
ations ofour estimates in the best-�t model and identify the key sour
es of sho
ks that drivema
roe
onomi
 �u
tuations. We 
on
lude in Se
tion VIII.II. Related literatureThe debate in the literature on the sour
es of ma
roe
onomi
 �u
tuations givesemphasis to whether shifts in monetary poli
y are the main sour
es of ma
roe
onomi
volatilities (Clarida, Galí, and Gertler, 2000; Lubik and S
horfheide, 2004; Sto
k andWatson, 2003; Sims and Zha, 2006; Bian
hi, 2008; Gambetti, Pappa, and Canova,2008) or whether sho
ks in investment-spe
i�
 te
hnology are more important thanother sho
ks in driving ma
roe
onomi
 �u
tuations (Fisher, 2006; Smets and Wouters,2007; Justiniano and Primi
eri, 2008). Mu
h of the disagreement stems from the use ofdi�erent frameworks and di�erent empiri
al methods. Part of the literature fo
uses onredu
ed-form e
onometri
 models, part of it on small-s
ale DSGE models, and part of iton medium-s
ale DSGE models. Some models assume homogeneity in sho
k varian
es;others assume that sho
k varian
es are time-varying. Some models are estimated withdi�erent subsamples to re�e
t shifts in poli
y or in sho
k varian
es; other models areestimated with the entire sample. Given these di�eren
es in the model frameworkand in the empiri
al approa
h, it is di�
ult to draw a �rm 
on
lusion about thesour
es of ma
roe
onomi
 �u
tuations. The goal of the 
urrent paper is to providea systemati
 examination of the sour
es of ma
roe
onomi
 �u
tuations in one uni�edDSGE framework that allows for regime shifts in sho
k varian
es and in monetarypoli
y.Our approa
h di�ers from that employed in the literature in several aspe
ts. First,we aim at fully 
hara
terizing the un
ertainty a
ross di�erent models by examiningdi�erent versions of the DSGE model for robust analysis to substantiate our 
on
lusion.



SOURCES OF MACROECONOMIC FLUCTUATIONS 4Although estimating a large set of models has not been performed in the literature, wethink it is ne
essary to examine the robustness of a 
on
lusion like ours about potentialsour
es of ma
roe
onomi
 �u
tuations.Se
ond, our approa
h does not require splitting the sample to examine 
hanges inmonetary poli
y, although it nests sampling-splitting as a spe
ial 
ase. Unlike Simsand Zha (2006) where the number of VAR parameters is relatively large and the in-�ation target is impli
it, our way of modeling poli
y 
hanges takes the in�ation targetexpli
itly and gives a tightly parameterized model that has the best 
han
e to dete
tthe importan
e of poli
y 
hanges, if it exists, in generating business-
y
le �u
tuations.Third and methodologi
ally, for fairly large DSGE models, espe
ially for regime-swit
hing DSGE models, the posterior distribution tends to be very non-Gaussian,making it very 
hallenging to sear
h for the global peak. We improve on earlier workssu
h as Cogley and Sargent (2005) and Justiniano and Primi
eri (2006) by obtaining theestimate of parameters at the posterior mode for ea
h model. We show that e
onomi
impli
ations 
an be seriously distorted if the estimates are based on a lower posteriorpeak.Fourth, there is a strand of literature that emphasizes 
hanges in the in�ation targetas a representation of important shifts in the 
ondu
t of U.S. monetary poli
y (for ex-ample, Favero and Rovelli (2003); Er
eg and Levin (2003); S
horfheide (2005); Ireland(2005). Unlike the earlier works, we study a variety of fairly large DSGE models toavoid potential mis-spe
i�
ations.Finally, we use three new methods for 
omputing marginal data densities in model
omparison. Sin
e these methods are based on di�erent statisti
al foundations, it isessential that all these methods give a numeri
ally similar result to ensure that theestimate of a marginal data density is unbiased and a

urate (Sims, Waggoner, andZha, 2008). III. The ModelThe model e
onomy is populated by a 
ontinuum of households, ea
h endowed witha unit of di�erentiated labor skill indexed by i ∈ [0, 1]; and a 
ontinuum of �rms, ea
hprodu
ing a di�erentiated good indexed by j ∈ [0, 1]. The monetary authority followsa feedba
k interest rate rule, under whi
h the nominal interest rate is set to respond toits own lag and deviations of in�ation and output from their targets. The poli
y regime
st represented by the time-varying in�ation target swit
hes between a �nite number ofregimes 
ontained in the set S, with the Markov transition probabilities summarized



SOURCES OF MACROECONOMIC FLUCTUATIONS 5by the matrix Q = [qij ], where qij = Prob(st+1 = i|st = j) for i, j ∈ S. The e
onomyis bu�eted by several sour
es of sho
ks. The varian
e of ea
h sho
k swit
hes betweena �nite number of regimes denoted by s∗t ∈ S∗ with the transition matrix Q∗ = [q∗ij ].III.1. The aggregation se
tor. The aggregation se
tor produ
es a 
omposite laborskill denoted by Lt to be used in the produ
tion of ea
h type of intermediate goods and a
omposite �nal good denoted by Yt to be 
onsumed by ea
h household. The produ
tionof the 
omposite skill requires a 
ontinuum of di�erentiated labor skills {Lt(i)}i∈[0,1]as inputs, and the produ
tion of the 
omposite �nal good requires a 
ontinuum ofdi�erentiated intermediate goods {Yt(j)}j∈[0,1] as inputs. The aggregation te
hnologiesare given by
Lt =

[
∫ 1

0

Lt(i)
1

µwt di

]µwt

, Yt =

[
∫ 1

0

Yt(j)
1

µpt dj

]µpt

, (1)where µwt and µpt determine the elasti
ity of substitution between the skills and be-tween the goods, respe
tively. Following Smets and Wouters (2007), we assume that
lnµwt = (1− ρw) lnµw + ρw lnµw,t−1 + σwtεwt − φwσw,t−1εw,t−1 (2)and that
lnµpt = (1− ρp) lnµp + ρp lnµp,t−1 + σptεpt − φpσp,t−1εp,t−1, (3)where, for j ∈ {w, p}, ρj ∈ (−1, 1) is the AR(1) 
oe�
ient, φj is the MA(1) 
oe�
ient,

σjt ≡ σj(s
∗

t ) is the regime-swit
hing standard deviation, and εjt is an i.i.d. white noisepro
ess with a zero mean and a unit varian
e. We interpret µwt and µpt as the wagemarkup and pri
e markup sho
ks.The representative �rm in the aggregation se
tor fa
es perfe
tly 
ompetitive marketsfor the 
omposite skill and the 
omposite good. The demand fun
tions for labor skill
i and for good j resulting from the optimizing behavior in the aggregation se
tor aregiven by

Ld
t (i) =

[

Wt(i)

W̄t

]

−
µwt

µwt−1

Lt, Y d
t (j) =

[

Pt(j)

P̄t

]

−
µpt

µpt−1

Yt, (4)where the wage rate W̄t of the 
omposite skill is related to the wage rates {Wt(i)}i∈[0,1]of the di�erentiated skills by W̄t =
[

∫ 1

0
Wt(i)

1/(1−µwt)di
]1−µwt and the pri
e P̄t of the
omposite good is related to the pri
es {Pt(j)}j∈[0,1] of the di�erentiated goods by

P̄t =
[

∫ 1

0
Pt(j)

1/(1−µpt)dj
]1−µpt .



SOURCES OF MACROECONOMIC FLUCTUATIONS 6III.2. The intermediate good se
tor. The produ
tion of a type j good requireslabor and 
apital inputs. The produ
tion fun
tion is given by
Yt(j) = Kf

t (j)
α1 [ZtL

f
t (j)]

α2 , (5)where Kf
t (j) and Lf

t (j) are the inputs of 
apital and the 
omposite skill and the variable
Zt denotes a neutral te
hnology sho
k, whi
h follows the sto
hasti
 pro
ess

Zt = λt
zzt, ln zt = (1− ρz) ln z + ρz ln zt−1 + σztεzt, (6)where ρz ∈ (−1, 1) measures the persisten
e, σzt ≡ σz(s

∗

t ) denotes the regime-swit
hingstandard deviation, and εzt is an i.i.d. white noise pro
ess with a zero mean and aunit varian
e. The parameters α1 and α2 measure the 
ost shares the 
apital andlabor inputs. Following Chari, Kehoe, and M
Grattan (2000), we introdu
e some realrigidity by assuming the existen
e of some �rm-spe
i�
 fa
tors (su
h as land), so that
α1 + α2 ≤ 1.Ea
h �rm in the intermediate-good se
tor is a pri
e-taker in the input market anda monopolisti
 
ompetitor in the produ
t market where it sets a pri
e for its produ
t,taking the demand s
hedule in (4) as given. We follow Calvo (1983) and assume thatpri
ing de
isions are staggered a
ross �rms. The probability that a �rm 
annot adjustits pri
e is given by ξp. Following Woodford (2003), Christiano, Ei
henbaum, andEvans (2005), and Smets and Wouters (2007), we allow a fra
tion of �rms that 
annotre-optimize their pri
ing de
isions to index their pri
es to the overall pri
e in�ationrealized in the past period. Spe
i�
ally, if the �rm j 
annot set a new pri
e, its pri
eis automati
ally updated a

ording to

Pt(j) = π
γp
t−1π

1−γpPt−1(j), (7)where πt = P̄t/P̄t−1 is the in�ation rate between t − 1 and t, π is the steady-statein�ation rate, and γp measures the degree of indexation.A �rm that 
an renew its pri
e 
ontra
t 
hooses Pt(j) to maximize its expe
teddis
ounted dividend �ows given by
Et

∞
∑

i=0

ξipDt,t+i[Pt(j)χ
p
t,t+iY

d
t+i(j)− Vt+i(j)], (8)where Dt,t+i is the period-t present value of a dollar in a future state in period t + i,

Vt+i(j) is the 
ost fun
tion, and the term χp
t,t+i 
omes from the pri
e-updating rule (7)and is given by

χp
t,t+i =

{

Πi
k=1π

γp
t+k−1π

1−γp if i ≥ 1

1 if i = 0.
(9)



SOURCES OF MACROECONOMIC FLUCTUATIONS 7In maximizing its pro�t, the �rm takes as given the demand s
hedule Y d
t+i(j) =

(

Pt(j)χ
p
t,t+i

P̄t+i

)−
µp,t+i

µp,t+i−1

Yt+i. The �rst order 
ondition for the pro�t-maximizing problemyields the optimal pri
ing rule
Et

∞
∑

i=0

ξipDt,t+iY
d
t+i(j)

1

µp,t+i − 1

[

µp,t+iΦt+i(j)− Pt(j)χ
p
t,t+i

]

= 0, (10)where Φt+i(j) = ∂Vt+i(j)/∂Y
d
t+i(j) denotes the marginal 
ost fun
tion. In the absen
eof markup sho
ks, µpt would be a 
onstant and (10) implies that the optimal pri
e isa markup over an average of the marginal 
osts for the periods in whi
h the pri
e willremain e�e
tive. Clearly, if ξp = 0 for all t, that is, if pri
es are perfe
tly �exible, thenthe optimal pri
e would be a markup over the 
ontemporaneous marginal 
ost.Cost-minimizing implies that the marginal 
ost fun
tion is given by

Φt(j) =

[

α̃(P̄trkt)
α1

(

W̄t

Zt

)α2
]

1

α1+α2

Yt(j)
1

α1+α2
−1
, (11)where α̃ ≡ α−α1

1 α−α2

2 and rkt denotes the real rental rate of 
apital input. The 
ondi-tional fa
tor demand fun
tions imply that
W̄t

P̄trkt
=

α2

α1

Kf
t (j)

Lf
t (j)

, ∀j ∈ [0, 1]. (12)III.3. Households. There is a 
ontinuum of households, ea
h endowed with a di�eren-tiated labor skill indexed by h ∈ [0, 1]. Household h derives utility from 
onsumptionand leisure. We assume that there exists �nan
ial instruments that provide perfe
tinsuran
e for the households in di�erent wage-setting 
ohorts, so that the householdsmake identi
al 
onsumption and investment de
isions despite that their wage in
omesmay di�er due to staggered wage setting.1 In what follows, we impose this assumptionand omit the household index for 
onsumption and investment.The utility fun
tion for household h ∈ [0, 1] is given by
E

∞
∑

t=0

βtAt

{

ln(Ct − bCt−1)−
Ψ

1 + η
Lt(h)

1+η

}

, (13)1To obtain 
omplete risk-sharing among households in di�erent wage-setting 
ohorts does not relyon the existen
e of su
h (impli
it) �nan
ial arrangements. As shown by Huang, Liu, and Phaneuf(2004), the same equilibrium dynami
s 
an be obtained in a model with a representative household(and thus 
omplete insuran
e) 
onsisting of a large number of worker members. The workers supplytheir homogenous labor skill to a large number of employment agen
ies, who transform the homogenousskill into di�erentiated skills and set nominal wages in a staggered fashion.



SOURCES OF MACROECONOMIC FLUCTUATIONS 8where β ∈ (0, 1) is a subje
tive dis
ount fa
tor, Ct denotes 
onsumption, Lt(h) denoteshours worked, η > 0 is the inverse Frish elasti
ity of labor hours, and b measures theimportan
e of habit formation. The variable At denotes a preferen
e sho
k, whi
hfollows the stationary pro
ess
lnAt = (1− ρa) lnA+ ρa lnAt−1 + σatεat, (14)where ρa ∈ (−1, 1) is the persisten
e parameter, σat ≡ σa(s

∗

t ) is the regime-swit
hingstandard deviation, and εat is an i.i.d. white noise pro
ess with a zero mean and a unitvarian
e.In ea
h period t, the household fa
es the budget 
onstraint
P̄tCt +

P̄t

Qt
[It + a(ut)Kt−1] + EtDt,t+1Bt+1 ≤

Wt(h)L
d
t (h) + P̄trktutKt−1 +Πt +Bt + Tt. (15)In the budget 
onstraint, It denotes investment, Bt+1 is a nominal state-
ontingentbond that represents a 
laim to one dollar in a parti
ular event in period t + 1, andthis 
laim 
osts Dt,t+1 dollars in period t; Wt(h) is the nominal wage for h's labor skill,

Kt−1 is the beginning-of-period 
apital sto
k, ut is the utilization rate of 
apital, Πtis the pro�t share, and Tt is a lump-sum transfer from the government. The fun
tion
a(ut) 
aptures the 
ost of variable 
apital utilization. Following Altig, Christiano,Ei
henbaum, and Linde (2004) and Christiano, Ei
henbaum, and Evans (2005), weassume that a(u) is in
reasing and 
onvex. The term Qt denotes the investment-spe
i�
 te
hnologi
al 
hange. Following Greenwood, Her
owitz, and Krusell (1997),we assume that Qt 
ontains a deterministi
 trend and a sto
hasti
 
omponent. Inparti
ular,

Qt = λt
qqt, (16)where λq is the growth rate of the investment-spe
i�
 te
hnologi
al 
hange and qt is aninvestment-spe
i�
 te
hnology sho
k, whi
h follows a stationary pro
ess given by

ln qt = (1− ρq) ln q + ρq ln qt−1 + σqtεqt, (17)where ρq ∈ (−1, 1) is the persisten
e parameter, σqt ≡ σq(s
∗

t ) is the regime-swit
hingstandard deviation, and εqt is an i.i.d. white noise pro
ess with a zero mean anda unit varian
e. The importan
e of investment-spe
i�
 te
hnologi
al 
hange is alsodo
umented in Fisher (2006) and Fernandez-Villaverde and Rubio-Ramirez (2007).The 
apital sto
k evolves a

ording to the law of motion
Kt = (1− δt)Kt−1 + [1− S(It/It−1)] It, (18)



SOURCES OF MACROECONOMIC FLUCTUATIONS 9where the fun
tion S(·) represents the adjustment 
ost in 
apital a

umulation. We as-sume that S(·) is 
onvex and satis�es S(λqλ∗) = S ′(λqλ
∗) = 0, where λ∗ = (λα1

q λα2

z )
1

1−α1is the steady-state growth rate of output and 
onsumption. The term δt denotes thedepre
iation rate of the 
apital sto
k and follows the stationary sto
hasti
 pro
ess
ln δt = (1− ρd) ln δ + ρd ln δt−1 + σdtεdt, (19)where ρe ∈ (−1, 1) is the persisten
e parameter, σdt ≡ σd(s

∗

t ) is the regime-swit
hingstandard deviaiton, and εdt is the white noise innovation with a zero mean and aunit varian
e. We introdu
e this time variation in the depre
iation rate to 
apturethe di�eren
e between e
onomi
 depre
iation (re�e
ting in part an unobserved qualityimprovement in equipment) and physi
al depre
iation.The household takes pri
es and all wages but its own as given and 
hooses Ct, It, Kt,
ut, Bt+1, and Wt(h) to maximize (13) subje
t to (15) - (18), the borrowing 
onstraint
Bt+1 ≥ −B for some large positive number B, and the labor demand s
hedule Ld

t (h)des
ribed in (4).The wage-setting de
isions are staggered a
ross households. In ea
h period, a fra
tion
ξw of households 
annot re-optimize their wage de
isions and, among those who 
annotre-optimize, a fra
tion γw of them index their nominal wages to the pri
e in�ationrealized in the past period. In parti
ular, if the household h 
annot set a new nominalwage, its wage is automati
ally updated a

ording to

Wt(h) = πγw
t−1π

1−γwλ∗

t−1,tWt−1(h), (20)where λ∗

t−1,t ≡
λ∗

t

λ∗

t−1

, with λ∗

t ≡ (Qα1

t Zα2

t )
1

1−α1 denoting the trend growth rate of aggre-gate output (and the real wage). If a household h ∈ [0, 1] 
an re-optimize its nominalwage-setting de
ision, it 
hooses W (h) to maximize the utility subje
t to the bud-get 
onstraint (15) and the labor demand s
hedule in (4). The optimal wage-settingde
ision implies that
Et

∞
∑

i=0

ξiwDt,t+iL
d
t+i(h)

1

µw,t+i − 1
[µw,t+iMRSt+i(h)−Wt(h)χ

w
t,t+i] = 0, (21)where MRSt(h) denotes the marginal rate of substitution between leisure and in
omefor household h and χw

t,t+i is de�ned as
χw
t,t+i ≡

{

Πi
k=1π

γw
t+k−1π

1−γwλ∗

t,t+i if i ≥ 1

1 if i = 0.
, (22)where λ∗

t,t+i ≡
λ∗

t+i

λ∗

t
. In the absen
e of wage-markup sho
ks, µwt would be a 
onstantand (21) implies that the optimal wage is a 
onstant markup over a weighted average



SOURCES OF MACROECONOMIC FLUCTUATIONS 10of the marginal rate of substitution for the periods in whi
h the nominal wage remainse�e
tive. If ξw = 0, then the nominal wage adjustments are �exible and (21) impliesthat the nominal wage is a markup over the 
ontemporaneous marginal rate of sub-stitution. We derive the rest of the household's optimizing 
onditions in a te
hni
alappendix available upon request.III.4. The government and monetary poli
y. The government follows a Ri
ardian�s
al poli
y, with its spending �nan
ed by lump-sum taxes so that P̄tGt = Tt, where
Gt denotes the government spending in �nal 
onsumption units. Denote by G̃t ≡

Gt

λ∗

tthe detrended government spending, where
λ∗

t ≡ (Zα2

t Qα1

t )
1

1−α1 . (23)We assume that G̃t follows the stationary sto
hasti
 pro
ess
ln G̃t = (1− ρg) ln G̃ + ρg ln G̃t−1 + σgtεgt + ρgzσztεzt, (24)where we follow Smets and Wouters (2007) and assume that the government spendingsho
k responds to produ
tivity sho
ks.Monetary poli
y is des
ribed by a feedba
k interest rate rule that allows the possi-bility of regime swit
hing in the in�ation target. The interest rate rule is given by

Rt = κRρr
t−1

[

(

πt

π∗(st)

)φπ
(

Yt

λ∗

t

)φy

]1−ρr

eσrtεrt, (25)where Rt = [EtDt,t+1]
−1 denotes the nominal interest rate and π∗(st) denotes theregime-dependent in�ation target. The 
onstant terms κ, ρr, φπ, and φy are poli
yparameters. The term εrt denotes the monetary poli
y sho
k, whi
h follows an i.i.d.normal pro
ess with a zero mean and a unit varian
e. The term σrt ≡ σr(s

∗

t ) is theregime-swit
hing standard deviation of the monetary poli
y sho
k. We assume thatthe 8 sho
ks εwt, εpt, εzt, εqt, εdt, εat, εrt, and εgt are mutually independent.III.5. Market 
learing and equilibrium. In equilibrium, markets for bond, 
om-posite labor, 
apital sto
k, and 
omposite goods all 
lear. Bond market 
learing impliesthat Bt = 0 for all t. Labor market 
learing implies that ∫ 1

0
Lf
t (j)dj = Lt. Capitalmarket 
learing implies that ∫ 1

0
Kf

t (j)dj = utKt−1. Composite goods market 
learingimplies that
Ct +

1

Qt
[It + a(ut)Kt−1] +Gt = Yt, (26)



SOURCES OF MACROECONOMIC FLUCTUATIONS 11where aggregate output is related to aggregate primary fa
tors through the aggregateprodu
tion fun
tion
GptYt = (utKt−1)

α1(ZtLt)
α2 , (27)with Gpt ≡

∫ 1

0

(

Pt(j)

P̄t

)

−
µpt

µpt−1

1

α1+α2 dj measuring the pri
e dispersion.Given �s
al and monetary poli
y, an equilibrium in this e
onomy 
onsists of pri
esand allo
ations su
h that (i) taking pri
es and all nominal wages but its own as given,ea
h household's allo
ation and nominal wage solve its utility maximization problem;(ii) taking wages and all pri
es but its own as given, ea
h �rm's allo
ation and pri
esolve its pro�t maximization problem; (iii) markets 
lear for bond, 
omposite labor,
apital sto
k, and �nal goods.IV. Equilibrium Dynami
sIV.1. Stationary equilibrium and the deterministi
 steady state. We fo
us ona stationary equilibrium with balan
ed growth. On a balan
ed growth path, output,
onsumption, investment, 
apital sto
k, and the real wage all grow at 
onstant rates,while hours remain 
onstant. Further, in the presen
e of investment-spe
i�
 te
hno-logi
al 
hange, investment and 
apital grow at a faster rate. To indu
e stationarity, wetransform variables so that
Ỹt =

Yt

λ∗

t

, C̃t =
Ct

λ∗

t

, w̃t =
Wt

P̄tλ∗

t

, Ĩt =
It

Qtλ∗

t

, K̃t =
Kt

Qtλ∗

t

,where λ∗

t is the underlying trend for output, 
onsumption, and the real wage given by(23).Along the balan
ed growth path, as noted by Greenwood, Her
owitz, and Krusell(1997), the real rental pri
e of 
apital keeps falling sin
e the 
apital-output ratio keepsrising. The rate at whi
h the rental pri
e is falling is given by λq. Thus, the transformedvariable r̃kt = rktQt, that is, the rental pri
e in 
onsumption unit, is stationary. Further,the marginal utility of 
onsumption is de
lining, so we de�ne Ũct = Uctλ
∗

t to indu
estationarity.The steady state in the model is the stationary equilibrium in whi
h all sho
ks areshut o�, in
luding the �regime sho
ks� to the in�ation target. To derive the steadystate, we represent the �nite Markov swit
hing pro
ess with a ve
tor AR(1) pro
ess(Hamilton, 1994). Spe
i�
ally, the in�ation target 
an be written as
π∗(st) = [π∗(1), π∗(2)]est, (28)



SOURCES OF MACROECONOMIC FLUCTUATIONS 12where π∗(j) is the in�ation target in regime j ∈ {1, 2} and
est =

[

1{st = 1}

1{st = 2}

]

, (29)with 1{st = j} = 1 if st = j and 0 otherwise. As shown in Hamilton (1994), therandom ve
tor est follows an AR(1) pro
ess:
est = Qest−1

+ vt, (30)where Q is the transition matrix of the Markov swit
hing pro
ess and the innovationve
tor has the property that Et−1vt = 0. In the steady state, vt = 0 so that (30)de�nes the ergodi
 probabilities for the Markov pro
ess and, from (28), the steady-state in�ation π is the ergodi
 mean of the in�ation target. Given π, the derivationsfor the rest of the steady-state equilibrium 
onditions are straightforward.IV.2. Linearized equilibrium dynami
s. To solve for the equilibrium dynami
s,we log-linearize the equilibrium 
onditions around the deterministi
 steady state. Weuse a hatted variable x̂t to denote the log-deviations of the stationary variable Xt fromits steady-state value (i.e., x̂t = ln(Xt/X)).Linearizing the optimal pri
ing de
ision rule implies that2
π̂t − γpπ̂t−1 =

κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (31)where θp ≡

µp

µp−1
, κp ≡

(1−βξp)(1−ξp)
ξp

, ᾱ ≡ 1−α1−α2

α1+α2
, and

m̂ct =
1

α1 + α2
[α1r̂kt + α2ŵt] + ᾱŷt. (32)This is the standard pri
e Phillips-
urve relation generalized to allow for partial dy-nami
 indexation. In the spe
ial 
ase without indexation (i.e., γp = 0), this relationredu
es to the standard forward-looking Phillips 
urve relation, under whi
h the pri
ein�ation depends on the 
urrent-period real marginal 
ost and the expe
ted future in-�ation. In the presen
e of dynami
 indexation, the pri
e in�ation also depends on itsown lag.Linearizing the optimal wage-setting de
ision rule implies that

ŵt−ŵt−1+π̂t−γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt+m̂rst−ŵt)+βEt[ŵt+1−ŵt+π̂t+1−γwπ̂t], (33)where ŵt denotes the log-deviations of the real wage, m̂rst = ηl̂t − Ûct denotes themarginal rate of substitution between leisure and 
onsumption, θw ≡ µw

µw−1
, and κw ≡2Derivations of the linearized equilibrium 
onditions are available upon request.
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(1−βξw)(1−ξw)

ξw
is a 
onstant. To help understand the e
onomi
s of this equation, werewrite this relation in terms of the nominal wage in�ation:
π̂w
t − γwπ̂t−1 =

κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) + βEt(π̂

w
t+1 − γwπ̂t)

+
1

1− α1
[α1(∆ẑt − βEt∆ẑt+1) + α2(∆q̂t − βEt∆q̂t+1)]. (34)where π̂w

t = ŵt − ŵt−1 + π̂t +∆λ̂∗

t denotes the nominal wage in�ation. This nominal-wage Phillips 
urve relation parallels that of the pri
e-Phillips 
urve and has similarinterpretations.The rest of the linearized equilibrium 
onditions are summarized below:
q̂kt = S ′′(λI)λ

2
I

{

∆ît − βEt∆ît+1

+
1

1− α1
[α2(∆ẑt − βEt∆ẑt+1) + ∆q̂t − βEt∆q̂t+1]

}

, (35)
q̂kt = Et

{

∆ât+1 +∆Ûc,t+1 −
1

1− α1
[α2∆ẑt+1 +∆q̂t+1]

+
β

λI

[

(1− δ)q̂k,t+1 − δδ̂t+1 + r̃kr̂k,t+1

]

}

, (36)
r̂kt = σuût, (37)
0 = Et

[

∆ât+1 +∆Ûc,t+1 −
1

1− α1
[α2∆ẑt+1 + α1∆q̂t+1] + R̂t − π̂t+1

]

, (38)
k̂t =

1− δ

λI

[

k̂t−1 −
1

1− α1

(α2∆ẑt +∆q̂t)

]

−
δ

λI

δ̂t +

(

1−
1− δ

λI

)

ît, (39)
ŷt = cy ĉt + iy ît + uyût + gy ĝt, (40)
ŷt = α1

[

k̂t−1 + ût −
1

1− α1
(α2∆ẑt +∆q̂t)

]

+ α2 l̂t, (41)
ŵt = r̂kt + k̂t−1 + ût −

1

1− α1

(α2∆ẑt +∆q̂t)− l̂t, (42)where (35) is the linearized investment de
ision equation with q̂kt denoting the shadowvalue of existing 
apital (i.e., Tobin's Q) and the∆ denoting the �rst-di�eren
e operator(so that ∆xt = xt − xt−1); (36) is the linearized 
apital Euler equation; (37) is thelinearized 
apa
ity utilization de
ision equation with σu ≡ a′′(1)
a′(1)

denoting the 
urvaturethe fun
tion a(u) evaluated at the steady state; (38) is the linearized bond Eulerequation; (39) is the linearized law of motion for the 
apital sto
k; (40) is the linearizedaggregate resour
e 
onstraint, with the steady-state ratios given by cy = C̃
Ỹ
, iy = Ĩ

Ỹ
,

uy = r̃kK̃

Ỹ λI
, and gy = G̃

Ỹ
; (41) is the linearized aggregate produ
tion fun
tion; and (42)is the linearized fa
tor demand relation.



SOURCES OF MACROECONOMIC FLUCTUATIONS 14Finally, the linearized interest rate rule is given by
R̂t = ρrR̂t−1 + (1− ρr) [φπ(π̂t − π̂∗(st)) + φyŷt] + σrtεrt, (43)where the term π̂∗(st) ≡ log π∗(st)− log π denotes the deviations of the in�ation targetfrom its ergodi
 mean. V. Estimation Approa
hWe estimate the parameters in our model using the Bayesian method. We des
ribe ageneral empiri
al strategy so that the method 
an be applied to other regimes-swit
hingDSGE models. As shown in the appendi
es, our model 
ontains twenty seven variables.Adding the �ve lagged variables ŷt−1, ĉt−1, ît−1, ŵt−1, and q̂t−1 to the list gives a totalof thirty three variables. We denote all these state variables by the ve
tor ft where ftis so arranged that the �rst eight variables are ŷt, ĉt, ît, ŵt, q̂t, π̂t, ℓ̂t, and R̂t and the last�ve variables are ŷt−1, ĉt−1, ît−1, ŵt−1, and q̂t−1.We apply the relation (28) to the poli
y rule (43), where the ve
tor est de�ned in (29)follows a ve
tor AR(1) pro
ess des
ribed in (30). Expanding the log-linearized systemwith the additional variables represented by est maintains the log-linear form in whi
hall 
oe�
ients are 
onstant (i.e., independent of regime 
hanges). A standard solutionte
hnique, su
h as the method proposed by Sims (2002), 
an be dire
tly utilized tosolve our DSGE model. The solution leads to the following VAR(1) form of stateequations

ft = c(st, st−1) + Fft−1 + C(s∗t )ǫt, (44)where ǫt = [ǫrt, ǫpt, ǫwt, ǫgt, ǫzt, ǫat, ǫdt, ǫqt]
′, and c(st) is a ve
tor fun
tion of the in-�ation targets π∗(st) and π∗(st−1) and the elements in the transition matrix Q, and

C(s∗t ) is a matrix fun
tion of σrt(s
∗

t ), σpt(s
∗

t ), σwt(s
∗

t ), σgt(s
∗

t ), σzt(s
∗

t ), σat(s
∗

t ), σdt(s
∗

t ),and σqt(s
∗

t ).It follows from (44) that the solution to our DSGE model depends on the 
ompositeregime (st, st−1, s
∗

t ). If s∗t is assumed to be the same as (st, st−1) (see S
horfheide(2005)), then the 
omposite regime 
ollapses to st. To simplify our notation and keepanalyti
al expressions tra
table, we use st to represent a 
omposite regime that in
ludes
(st, st−1, s

∗

t ) as a spe
ial 
ase for the rest of this se
tion.Our estimation is based on the 1959:I-2007:IV quarterly time-series observations on8 U.S. aggregate variables:3 real per 
apita GDP (Y Data
t ), real per 
apita 
onsumption3We did not in
lude the sample after 2007 be
ause it is beyond the s
ope of this paper to addressthe 
urrent �nan
ial 
risis and the e�e
t of monetary poli
y at the lower zero bound.
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t ), real per 
apita investment (IDatat ), real wage (wData

t ), the investment-spe
i�
te
hnology (i.e., the biased te
hnology Qt), the quarterly GDP-de�ator in�ation rate(πDatat ), per 
apita hours (LData
t ), and the (annualized) federal funds rate (FFRData

t ).Note that IDatat 
orresponds to It
Qt

in the model (i.e., investment measured in units of
onsumption goods); a detailed des
ription of the data is in Appendix A. These dataare represented by the following ve
tor of observable variables:
yt =

[

∆ lnY Data
t ,∆ lnCData

t ,∆ ln IDatat ,∆ lnwData
t , ln πDatat ,∆ lnQData

t , lnLData
t , FFRData

t

400

]

′

.The observable ve
tor is 
onne
ted to the model (state) variables through the mea-surement equations
yt = a+Hft,where

a =
[

lnλ∗, lnλ∗, lnλ∗, lnλ∗, ln π, lnλq, lnL, lnR
]

′

. (45)Given the aforementioned regime-swit
hing state spa
e form, one 
an estimate themodel following the general estimation methodology of Sims, Waggoner, and Zha(2008).4V.1. Three methods for 
omputing marginal data densities. To evaluate themodel's �t to the data and 
ompare it to the �t of other models, one wishes to 
omputethe marginal data density implied by the model. To keep the notation simple, let θrepresent a ve
tor of all model parameters ex
ept the transition matrix and Q be a
olle
tion of all free parameters in the transition matrix. The marginal data density isde�ned as
p(YT ) =

∫

p(YT | θ,Q)p(θ) dθdQ, (46)where the likelihood fun
tion p(YT | θ,Q) 
an be evaluated re
ursively. For manyempiri
al models, the modi�ed harmoni
 mean (MHM) method of Gelfand and Dey(1994) is a widely used method to 
ompute the marginal data density. The MHMmethod used to approximate (46) numeri
ally is based on a theorem that states
p(YT )

−1 =

∫

Θ

h(θ,Q)

p(YT | θ,Q)p(θ,Q)
p(θ,Q | YT )dθdQ, (47)where Θ is the support of the posterior probability density and h(θ,Q), often 
alled aweighting fun
tion, is any probability density whose support is 
ontained in Θ. Denote

m(θ,Q) =
h(θ,Q)

p(YT | θ,Q)p(θ,Q)
.4The method details are also provided in an independent te
hni
al appendix to this arti
le, whi
his available on http://home.earthlink.net/ tzha01/workingPapers/wp.html.
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al evaluation of the integral on the right hand side of (47) 
an be a

om-plished in prin
iple through the Monte Carlo (MC) integration
p̂(YT )

−1 =
1

N

N
∑

i=1

m(θ(i), Q(i)), (48)where (θ(i), Q(i)) is the ith draw of (θ,Q) from the posterior distribution p(θ,Q | YT ).If m(θ,Q) is bounded above, the rate of 
onvergen
e from this MC approximation islikely to be pra
ti
al.Geweke (1999) proposes a Gaussian fun
tion for h(·) 
onstru
ted from the posteriorsimulator. The likelihood and posterior density fun
tions for our medium-s
ale DSGEmodel turn out to be quite non-Gaussian and there exist zeros of the posterior pdf in theinterior points of the parameter spa
e. In this 
ase, the standard MHM pro
edure tendsto be unreliable as the MCMC draws are likely to be dominated by a few draws as thenumber of draws in
rease. Sims, Waggoner, and Zha (2008) proposes a trun
ated non-Gaussian weighting fun
tion for h(·) to remedy the problem. This weighting fun
tionseems to work well for the non-Gaussian posterior density.In addition to the method of Sims, Waggoner, and Zha (2008), we use the unpub-lished method developed by Ulri
h Müeller at Prin
eton University. To summarizeMüeller's method for 
omputing the marginal data density, we introdu
e the follow-ing notation. Let θ be an n × 1 ve
tor of random variables, p(θ) be the target pdf,whose probability density is of unknown form, and p∗(θ) be the target kernel where
p(θ) = c∗p∗(θ). Thus, our obje
tive is to obtain an a

urate estimate of the positive
onstant c∗. Let h(θ) be an approximate or weighting pdf and c be a positive realnumber. De�ne the fun
tion f(c) as follows:
f(c) = Eh

[

1

{

cp∗(θ)

h(θ)
< 1

}(

1−
cp∗(θ)

h(θ)

)]

−

Eg

[

1

{

h(θ)

cp∗(θ)
< 1

}(

1−
h(θ)

cp∗(θ)

)]

.One 
an show that this fun
tion has the following properties:
• f(c) is monotoni
ally de
reasing in c;
• f(0) = 1 and f(∞) = −1.Given these properties, one 
an use a bise
tion method to �nd an estimate of c∗ where

f(c∗) = 0.A third method we use is bridge sampling of Meng and Wong (1996). The bridge-sampling method has been often regarded as one of the most reliable methods for
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omputing the Bayes fa
tor. Sin
e these three methods are developed from di�erentmathemati
al relationships, we re
ommend using all these methods to ensure that theestimated value of the marginal data density is numeri
ally similar a
ross methods.Be
ause the posterior density fun
tion is very non-Gaussian and 
ompli
ated inshape, it is all the more important to �nd the posterior mode via an optimizationroutine. The estimate of the mode not only represents the most likely value (andthus the posterior estimate) but also serves as a 
ru
ial starting point for initializingdi�erent 
hains of MCMC draws.For various DSGE models studied in this paper, �nding the mode has proven tobe a 
omputationally 
hallenging task. The optimization method we use 
ombinesthe blo
k-wise BFGS algorithm developed by Sims, Waggoner, and Zha (2008) andvarious 
onstrained optimization routines 
ontained in the 
ommer
ial IMSL pa
kage.The blo
k-wise BFGS algorithm, following the idea of Gibbs sampling and EM algo-rithm, breaks the set of model parameters into subsets and uses Christopher A. Sims's
csminwel program to maximize the likelihood of one set of the model's parameters
onditional on the other sets.5 Maximization is iterated at ea
h subset until it 
on-verges. Then the optimization iterates between the blo
k-wise BFGS algorithm andthe IMSL routines until it 
onverges. The 
onvergen
e 
riterion is the square root ofma
hine epsilon.Thus far we have des
ribed the optimization pro
ess for only one starting point.6Our experien
e is that without su
h a thorough sear
h, one 
an be easily misled to amu
h lower posterior value (e.g., a few hundreds lower in log value than the posteriorpeak). We thus use a set of 
luster 
omputing tools des
ribed in Rama
handran,Urazov, Waggoner, and Zha (2007) to sear
h for the posterior mode. We begin with agrid of 100 starting points; after 
onvergen
e, we perturb ea
h maximum point in bothsmall and large steps to generate additional 20 new starting points and restart theoptimization pro
ess again; the posterior estimates attain the highest posterior densityvalue. The other 
onverged points typi
ally have mu
h lower likelihood values by atleast a magnitude of hundreds of log values. For ea
h DSGE model, the peak value ofthe posterior kernel and the mode estimates are reported.5The csminwel program 
an be found on http://sims.princeton.edu/yftp/optimize/.6For the no-swit
hing (
onstant-parameter) DSGE model, it takes a 
ouple of hours to �nd theposterior peak. While the model with two-regime sho
k varian
es takes about 20 hours to 
onverge,the model with two-regime in�ation targets and two-regime two-regime sho
k varian
es takes fourtimes longer.



SOURCES OF MACROECONOMIC FLUCTUATIONS 18V.2. Priors. We set three parameters a priori. We set the steady-state governmentspending to output ratio at gy = 0.18. We follow Justiniano and Primi
eri (2006)and �x the persisten
e of the government spending sho
k pro
ess at ρg = 0.99. Asnoted by Smets and Wouters (2007), all these government parameter are di�
ult toestimate unless government spending is in
luded in the set of measurement equations.Finally, we normalize and �x the steady-state hours worked at L = 0.2. We estimateall the remaining parameters. Tables 3 and 4 summarize the prior distributions for thestru
tural parameters and the sho
k parameters.Our priors are 
hosen to be more �exible and less tight than those in the previousliterature. Spe
i�
ally, instead of spe
ifying the mean and the standard deviation, weuse the 90% probability interval to ba
k out the hyperparameter values of the priordistribution.7 The intervals are generally set wide enough to allow the possibility ofmultiple posterior peaks (Del Negro and S
horfheide, 2008). Our approa
h is also ne
-essary to deal with skewed distributions and allow for some reasonable hyperparametervalues in 
ertain distributions (su
h as the Inverse-Gamma) where the �rst two mo-ments may not exist. The probability intervals reported in Table 3 
over the 
alibratedvalue of ea
h parameter.We begin with the preferen
e parameters b, η, and β. Our prior for the habit-persisten
e parameter b follows the Beta distribution. We 
hoose the 2 hyper-parametersof the Beta distribution su
h that the lower bound for b (0.05) has a 
umulative prob-ability of 5% and the upper bound (0.948) has a 
umulative probability of 95%. This
90% probability interval for b 
overs the values used by most e
onomists (for exam-ple, Boldrin, Christiano, and Fisher (2001) and Christiano, Ei
henbaum, and Evans(2005)). Our prior for the inverse Fris
h elasti
ity η follows the Gamma distribution.We 
hoose the 2 hyper-parameters of the Gamma distribution su
h that the lowerbound (0.2) and the upper bound (10.0) of η 
orrespond to the 90% probability in-terval. This prior range for η implies that the Fris
h elasti
ity lies between 0.1 and
5, a range broad enough to 
over the values based on both mi
roe
onomi
 eviden
e(Pen
avel, 1986) and ma
roe
onomi
 studies (Rupert, Rogerson, and Wright, 2000).Our prior for the transformed subje
tive dis
ount fa
tor χβ ≡ 100( 1

β
− 1) follows theGamma distribution, with the hyper-parameters appropriately 
hosen su
h that thebounds for the 90% probability interval of χβ are 0.2 and 4.0. The implied value of βlies in the range between 0.9615 and 0.998, whi
h nests the values obtained by Smets7The program for ba
king out the hyperparameter values of a given prior 
an be found inhttp://home.earthlink.net/ tzha02/ProgramCode/programCode.html.



SOURCES OF MACROECONOMIC FLUCTUATIONS 19and Wouters (2007) (β = 0.9975) and Altig, Christiano, Ei
henbaum, and Linde (2004)(β = 0.9926).Next, we dis
uss the prior distributions for the te
hnology parameters α1, α2, λq, λ∗,
σu, S ′′, and δ. Our priors for the labor share and 
apital share both follow the Betadistribution with the restri
tion α1+α2 ≤ 1 so that the produ
tion te
hnology requires�rm-spe
i�
 fa
tors (Chari, Kehoe, and M
Grattan, 2000). Spe
i�
ally, the bounds forthe α1 values in the 90% probability interval are 0.15 and 0.35 and those for α2 are
0.35 and 0.75. With the restri
tion α1 + α2 ≤ 1, however, the joint 90% probabilityregion would be somewhat di�erent. We assume that the priors for the (transformed)trend growth rates of the investment-spe
i�
 te
hnology and the neutral te
hnologyboth follow the Gamma distribution, with the 5% and 95% bounds given by 0.1 and
1.5 respe
tively. These values imply that, with 90% probability, the prior values for thetrend growth rates λq and λ∗ lie in the range between 1.001 and 1.015 (
orrespondingto annual rates of 0.4% and 6%, respe
tively). We assume that the priors for the
apa
ity utilization parameter σu and the investment adjustment 
ost parameter S ′′both follow the Gamma distribution, with the lower bounds given by 0.5 and 0.1 andthe upper bounds given by 3.0 and 5.0, respe
tively. These 90% probability ranges
over the values obtained, for example, by Christiano, Ei
henbaum, and Evans (2005)and Smets and Wouters (2007). We assume that the prior for the average annualizeddepre
iation rate follows the Beta distribution with the 90% probability range lyingbetween 0.05 and 0.20.Third, we dis
uss the prior distributions for the parameters that 
hara
terize pri
eand nominal wage setting in the model. These in
lude the average pri
e markup µp,the average wage markup µw, the Calvo probabilities of non-adjustment in pri
ing ξpand in wage-setting ξw, and the indexation parameters γp and γw. The priors for thenet markups µp − 1 and µw − 1 both follow the Gamma distribution with the 90%probability range 
overing the values between 0.01 and 0.5. This range 
overs most ofthe 
alibrated values of the markup parameters used in the literature (e.g., Basu andFernald (2002), Rotemberg and Woodford (1997), Huang and Liu (2002)). The priorsfor the pri
e and wage duration parameters ξp and ξw both follow the Beta distributionwith the 90% probability range between 0.1 and 0.75. Under this prior distribution,the nominal 
ontra
t durations vary, with 90% probability, between 1.1 quarters and 4quarters. This range 
overs the values of the frequen
ies of pri
e and wage adjustmentsused in the literature (e.g., Bils and Klenow (2004), Taylor (1999)). The priors for theindexation parameters γp and γw both follow the uniform distribution with the 90%



SOURCES OF MACROECONOMIC FLUCTUATIONS 20probability range lying between 0.05 and 0.95. In this sense, we have loose priors onthese indexation parameters, the range of whi
h 
overs those used in most studies (e.g.,Christiano, Ei
henbaum, and Evans (2005), Smets and Wouters (2007), and Woodford(2003)).Finally, we dis
uss the 
oe�
ients in the monetary poli
y rule, in
luding ρr, φπ, and
φy. The prior for the interest-rate smoothing parameter ρr follows the Beta distributionwith the 90% probability range between 0.05 and 0.948. The prior for the in�ation
oe�
ient φπ follows the Gamma distribution with the 90% probability range between
0.5 and 5.0. The prior for the output 
oe�
ient φy follows the Gamma distributionwith the 90% probability range between 0.05 and 3.0. This range in
ludes the valuesobtained by Clarida, Galí, and Gertler (2000) and others. These prior values allowfor an indetermina
y region. When the equilibrium is indeterminate, we follow Boivinand Giannoni (2006) and use the MSV solution. In our estimation, however, there ispra
ti
ally little probability for the parameters to be in the indeterminate region.Our priors for the AR(1) 
oe�
ients for the neutral and biased te
hnology sho
ks
ρq and ρz are uniformly distributed in the [0, 1] interval. The AR(1) 
oe�
ients for allother sho
ks and the MA(1) 
oe�
ients for the pri
e and wage markup sho
ks followthe Beta distribution with the 5%-95% probability range given by [0.05, 0.948]. Theprior for the parameter ρgz follows the Gamma distribution with the 90% probabilityrange given by [0.2, 3.0]. The standard deviations of ea
h of the 8 sho
ks follow theInverse Gamma distribution with the 90% probability range given by [0.0005, 1.0]. Thisprobability range implies a more agnosti
 prior than Smets and Wouters (2007) andJustiniano and Primi
eri (2006). Su
h an agnosti
 prior is needed to allow for possiblelarge 
hanges in sho
k varian
es a
ross regimes, as found in Sims and Zha (2006).We have experimented with di�erent priors. In one alternative prior, we follow theliterature and make a prior on the persisten
e parameters in sho
k pro
esses mu
htighter towards zero, su
h as the Beta(1, 2) probability density. Our 
on
lusions holdtrue for these priors as well. VI. Empiri
al ResultsIn this se
tion, we report our main empiri
al �ndings. We 
ompare in Se
tion VI.1the empiri
al �t of a variety of models nested by our general regime-swit
hing DSGEframework. We then report in Se
tion VI.2 the estimation results in our best-�t modeland highlight the di�eren
e of these estimates from some alternative models.



SOURCES OF MACROECONOMIC FLUCTUATIONS 21VI.1. Model Fit. The �rst set of results to dis
uss is measures of model �t, withthe 
omparison based on maximum log posterior densities adjusted by the S
hwarz
riterion.8 Table 1 reports S
hwarz 
riteria for di�erent versions of our DSGE model(the 
olumn �Baseline�) and for models with the restri
tion that all the persisten
eparameters in both pri
e markup and wage markup pro
esses are set to zero (the
olumn �Restri
ted�).Table 1 shows that the model with regime shifts in sho
k varian
es only (DSGE-2v)is the best-�t model, mu
h better than the 
onstant-parameter DSGE model (DSGE-
on). The S
hwarz 
riterion for the baseline DSGE-2v model is 5963.03, 
omparedto 5859.71 for the DSGE-
on model. When we allow the in�ation target to swit
hregimes while holding the sho
k varian
es 
onstant (DSGE-2
), the model's �t doesnot improve upon the 
onstant-parameter DSGE model. When we allow both thein�ation target and sho
k varian
es to swit
h regimes with the same Markov pro
ess(i.e., regime swit
hing is syn
hronized), the model (DSGE-2
v) does better than theone with regime swit
hing in the in�ation target alone, but it does not improve uponthe baseline DSGE-2v model with regime shifts in the sho
k varian
es only. Whenwe relax the assumption that swit
hes in the sho
k regime and those in the in�ationtarget regime are syn
hronized and 
ompute the S
hwarz 
riterion for the model withthe target regime and the sho
k regime independent of ea
h other (DSGE-2
2v), we�nd that the model's �t does not improve relative to either the DSGE-2
v model withsyn
hronized regime shifts in the in�ation target and the sho
k varian
es or the baselineDSGE-2v model with syn
hronized regime shifts in sho
k varian
es only. We have alsoexamined the possibility of 3 sho
k regimes instead of 2. We �nd that the 3-regimemodel (DSGE-3v) does not improve upon the baseline 2-regime model (DSGE-2v).We have also estimated models with sho
k varian
es following independent Markovswit
hing pro
esses. This s
enario approximates sto
hasti
 volatility models, whereea
h sho
k varian
e has its own independent sto
hasti
 pro
ess (Tau
hen, 1986; Sims,Waggoner, and Zha, 2008). In addition, we have grouped a subset of sho
k varian
eshaving the same Markov pro
esses. None of these models �ts to the data better thanour baseline DSGE-2v model. For example, when we allow regimes asso
iated withthe varian
es of the two te
hnology sho
ks to be independent of the regime swit
hingpro
esses of the other sho
k varian
es (DSGE-2v2v), we obtain a S
hwarz 
riterion of
5958.18, whi
h is lower than that of the baseline DSGE-2v model (5963.03). In short,8The S
hwarz 
riterion is similar to the Lapla
e approximation used by Smets and Wouters (2007).



SOURCES OF MACROECONOMIC FLUCTUATIONS 22the data favor the parsimoniously-parameterized model with sho
k varian
es swit
hingregimes simultaneously.The last 
olumn in Table 1 shows that the model with regime 
hanges in sho
k vari-an
es only 
ontinues to dominate all the other models, when the persisten
e parametersin both pri
e and wage markup sho
k pro
esses are restri
ted to zero. In parti
ular,the model with the target swit
hing regimes (DSGE-2
) does not improve upon the
onstant-parameter model. Of 
ourse, all these restri
ted models �t to the data mu
hworse than the 
orresponding baseline models, implying that persistent sho
k pro
essesare important in �tting the data.Finally, we have estimated a number of models with persisten
e parameters in othersho
k pro
esses set to zero and with habit and indexation parameters set to zero.The model with syn
hronized regimes in sho
k varian
es 
ontinue to outperform othermodels in �tting the data.The relative performan
e of the alternative DSGE models in �tting the data does not
hange when we look at the marginal data density (MDD). Table 2 reports the MDDfor ea
h of the alternative models. The table shows that the model with simultaneousregime shifts in sho
k varian
es (DSGE-2v) is the best-�t model not only in termsof the S
hwarz 
riterion, but also in terms of the marginal data density. In parti
u-lar, the DSGE-2v model's MDD is 5832.38, mu
h higher than that of the DSGE-
onmodel (whose MDD is 5741.24). The model with regime swit
hing in the in�ationtarget alone (DSGE-2
) slightly outperforms the 
onstant parameter model, but sub-stantially under-performs the DSGE-2v model. With regime shifts in sho
k varian
es,introdu
ing regime shifts in the in�ation target syn
hronized with regime shifts insho
k varian
es (DSGE-2
v) or allowing the in�ation target to follow a Markov swit
h-ing pro
ess independent of sho
k regimes (DSGE-2
2v) does not improve the marginaldata density relative to the DSGE-2v model.9VI.2. Estimates of Stru
tural Parameters. We �rst dis
uss our best-�t model�DSGE-2v.� The model is similar to that in Smets and Wouters (2007) with six notableex
eptions. First, we introdu
e a sour
e of real rigidity in the form of �rm-spe
i�
fa
tors, whi
h repla
es the kinked demand 
urves 
onsidered by Smets and Wouters(2007). Se
ond, we introdu
e trend growth in the investment-spe
i�
 te
hnologi
al
hange to better 
apture the data, in whi
h the relative pri
e of investment goods9The good �t represented by DSGE-2
v 
omes entirely from signi�
ant shifts in sho
k varian
es.The estimated in�ation targets are 2.18% for one regime and 1.70% for the other regime and thedi�eren
e between these two targets are statisti
ally insigni�
ant.



SOURCES OF MACROECONOMIC FLUCTUATIONS 23(e.g., equipment and software) has been de
lining for most of the postwar period,while in Smets and Wouters (2007) the investment-spe
i�
 te
hnologi
al 
hanges haveno trend 
omponent. We use the observed time series of biased te
hnologi
al 
hangesin our estimation, while Smets and Wouters (2007) treat these 
hanges as a latentvariable. Third, we introdu
e the depre
iation sho
k that a
ts as a wedge in the
apital-a

umulation Euler equation. Fourth, the preferen
e sho
k in our model entersall intertemporal de
isions, in
luding 
hoi
es of the nominal bond, the 
apital sto
k,and investment, while Smets andWouters (2007) introdu
e a �risk-premium sho
k� thatenters the bond Euler equation only and does not a�e
t other intertemporal de
isions.Fifth, in the interest rate rule, we assume that the nominal interest rate respondsto deviations of in�ation from its target and detrended output, while in Smets andWouters (2007) the interest rate rule targets in�ation, output gap, and the growth rateof output gap. Finally, we allow for heteros
adasti
ity of stru
tural sho
ks to obtainthe a

urate estimate of the role of a parti
ular sho
k in explaining ma
roe
onomi
�u
tuations. All these distin
tions may explain some of the di�eren
es between ourestimated results and theirs.Tables 3 and 4 report the estimates of the model parameters. The data are informa-tive about many stru
tural parameters. Among the three preferen
e parameters, theestimate for habit persisten
e (b) is 0.91 with the tight error bands. The estimate for
η is 2.89, implying a Fris
h elasti
ity of 0.35 and 
onsistent with most mi
roe
onomi
studies. The probability interval indi
ates that η 
an be as high as 8.38. The estimatefor the subje
tive dis
ount fa
tor β is 0.998 (the same as the value obtained by Smetsand Wouters (2007)) with the tight probability interval [0.996, 0.999].Among the te
hnology parameters, the estimate for α1 (0.153) with the upper er-ror band (0.216) 
lose to the estimate obtained by Smets and Wouters (2007) (0.19).Be
ause of the 
onstraint α1+α2 ≤ 1, the estimate for α2 is (0.835). These posterior es-timates suggest that the data prefer a model spe
i�
ation with (near) 
onstant-returnsprodu
tion te
hnology. The estimated trend growth rate for the investment-spe
i�
te
hnologi
al 
hange (λq) is 4% per annum, slightly higher than the 
alibrated valueobtained by Greenwood, Her
owitz, and Krusell (1997) be
ause we in
lude the datain the late 1990s until 2007 when the investment-spe
i�
 te
hnologi
al improvementwas the fastest in the sample. The estimate for the trend growth rate of the neutralte
hnologi
al 
hange (λ∗) is 0.95% per annum. There is a large amount of un
ertaintyabout these trend estimates as shown in the last two 
olumns of Table 3. The 
ur-vature parameter in the utilization fun
tion (σu) is estimated at 2.26, substantially
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eri (2006) (7.13), but higherthan the values estimated by Altig, Christiano, Ei
henbaum, and Linde (2004) (2.02)and by Smets and Wouters (2007) (1.174). The error bands show a large amount ofun
ertainty around the estimate of this parameter. The investment adjustment 
ostparameter (S ′′) is estimated to be 2.0, lower than those obtained in the literature.Unlike most studies in the literature that �x the value of the 
apital depre
iation ratea priori, we allow the depre
iation rate δ to follow a stationary sto
hasti
 pro
ess andestimate the parameter in the pro
ess. The estimated average annum depre
iation rateis 13.4%, whi
h is remarkably 
lose to the standard 
alibration value in the real busi-ness 
y
le literature, but the error bands are very wide, implying the great un
ertaintyabout this estimate.Among the pri
ing and wage setting parameters, the estimated average pri
e markup(µp) is about 1.0, whi
h is 
onsistent with the studies by Hall (1988), Basu and Fernald(1997), and Rotemberg and Woodford (1999), who argue that the pure e
onomi
 pro�tis 
lose to zero. It is also similar to the estimate obtained by Altig, Christiano, Ei
hen-baum, and Linde (2004), but mu
h smaller than the value estimated by Justiniano andPrimi
eri (2006). Our estimate for the average wage markup (µw) is 1.06, whi
h is lowerthan the 
alibrated value (Huang and Liu, 2002) and the estimated value (Justinianoand Primi
eri, 2006), but is similar to the value used by Christiano, Ei
henbaum, andEvans (2005). The un
ertainty about the wage markup parameter, judged by the .90probability bands, is mu
h larger than that about the pri
e markup parameter. Theestimated pri
e and wage sti
kiness parameters (ξp = 0.412 and ξw = 0.213) imply that,on average, pri
e 
ontra
ts last for less than 2 quarters and nominal wage 
ontra
tshave an even shorter duration, whi
h is slightly more than 1 quarter. Our estimatednominal 
ontra
t duration is 
onsistent with the mi
roe
onomi
 studies su
h as Bilsand Klenow (2004). The estimated dynami
 indexation is unimportant for pri
e set-ting (γp = 0.178) but very important for nominal wage setting (γw = 1.0). The .90probability intervals indi
ate that while the pri
e indexation is tightly estimated, theun
ertainty about the nominal wage indexation is extremely large.As shown in Tables 3, the estimated wage sti
kiness parameter lies below the lowerbound of the .90 probability interval. This phenomenon o

urs be
ause the posteriordistribution around the mode for this parameter is on the thin ridge and be
ause thereare many lo
al peaks that give a signi�
ant probability to regions 
ontaining the valuesabove the estimated wage sti
kiness parameter. While it is impossible to graph thisphenomenon in a high dimensional parameter spa
e like ours, we display in Figure 1
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kiness parameter and the average wage markupparameter after integrating out all other parameters. As one 
an see, the multiplelo
al peaks give mu
h of the probability to the values of the wage sti
kiness param-eters greater than the estimate at the posterior mode. Be
ause the two-dimensionaldistribution displayed in Figure 1 integrates out all other parameters, the distributionis already skewed toward the values of the wage sti
kiness parameters greater than 0.2.Nonetheless, the pi
ture demonstrates 
learly the nature of thin ridges and multiplelo
al peaks inherent in the posterior distribution.The estimates of poli
y parameters suggest that interest-rate smoothing is important;the estimate of ρr is 0.82 with a narrow probability interval. The poli
y responseto deviations of in�ation from its target in the interest rule (φπ) is 1.655 with thelower probability bound still signi�
antly above 1.0. Poli
y does not respond mu
h todetrended output and the parameter (φy) is tightly estimated. The in�ation target(π∗) is estimated at 2.28% per annum.The estimated results for sho
k pro
esses are reported in Table 4. The AR(1) 
o-e�
ients for all sho
ks ex
ept the preferen
e sho
k (ρa) are above 0.9, although thelower probability bounds for some 
oe�
ients are substantially below (0.9). The pref-eren
e sho
k is almost i.i.d.. The MA(1) 
oe�
ients in the pri
e markup and wagemarkup pro
esses (φp and φw) are both sizable. The estimates are 0.698 and 0.749 andthe 
orresponding .90 probability intervals support these high values. The governmentspending sho
k responds to the neutral te
hnology sho
k; the response 
oe�
ient (ρgz)is 0.894 with a wide probability interval. Although the prior distributions for all thesho
k varian
es are the same, the posterior estimates are very disperse. The depre-
iation sho
k (σd) and the wage markup sho
k (σw) have the largest varian
es; themonetary poli
y sho
k (σr) and the two types of te
hnology sho
ks (σz and σq) havethe smallest varian
es. The .90 probability intervals indi
ate that the marginal poste-rior distribution of a sho
k varian
e is skewed to the right. This shape is expe
ted asthe varian
e is bounded below by zero below and has no upward bound.As shown in Table 4, the estimated sho
k varian
es in the se
ond regime are sub-stantially smaller than those in the �rst regime. The estimated transition probabilitiesare summarized by the matrix
Q̂ =

[

0.8072 0.0598

0.1928 0.9402

]

, (49)where the elements in ea
h 
olumn sum to one. The se
ond regime (i.e., the regimewith low sho
k varian
es) is more persistent and, as shown in Figure 2, 
overs most
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e Greenspan be
ame Chairman of the Federal Reserve Board. Thisresult is even stronger when one take into a

ount the error bands, where the lowerbound of q22 is higher than the upper bound of q11.Figure 3 plots the marginal posterior distribution of some key parameters. The lo
alpeaks shown in the marginal distribution of the in�ation target are the dire
t out
omeof the integrated e�e
t of the non-Gaussian joint posterior distribution of all parametersthat has thin ridges and multiple peaks. Most of the probability, however, 
on
entratesbetween 2% and 4%. The marginal distribution of the response 
oe�
ient to in�ation inthe Taylor indi
ates that there is pra
ti
ally no probability for indeterminate equilibriafor our model.The marginal distribution of the pri
e-sti
kiness parameter implies that the pri
erigidity is mu
h smaller than what is obtained in the previous literature. The posteriormode is near the lower tail of the marginal distribution. The joint distribution, asillustrated in Figure 1, has a thin ridge and many lo
al peaks. After integrating outall other parameters, the marginal distribution of the wage-sti
kiness parameter showsa lo
al peak around 0.7. The majority of the probability, however, lies below the value
0.6.There are two reasons why we obtain estimates that imply shorter durations of pri
eand wage 
ontra
ts than those obtained in the literature su
h as Altig, Christiano,Ei
henbaum, and Linde (2004) and Smets and Wouters (2007). First, our estimatessuggest that the pri
e markup is very small, implying that the demand 
urve for dif-ferentiated goods is very �at. Thus, a small in
rease in the relative pri
e 
an lead tolarge de
lines in relative output demand. Even if �rms 
an re-optimize their pri
ingde
isions very frequently, they 
hoose not to adjust their relative pri
es too mu
h. Inthis sense, the small average markup and thus the large demand elasti
ity be
ome asour
e of strategi
 
omplementarity in �rms' pri
ing de
isions. Se
ond, unlike Altig,Christiano, Ei
henbaum, and Linde (2004) who use a minimum-distan
e estimator thatmat
hes the model's impulse responses to those in the data, we use full-informationmaximum likelihood estimation. This di�eren
e is important be
ause Altig, Chris-tiano, Ei
henbaum, and Linde (2004) �nd that, while a sho
k to neutral te
hnologyleads to rapid adjustments in pri
es, a sho
k to monetary poli
y leads to small andgradual pri
e adjustments. Under their estimation approa
h, mat
hing the impulseresponses following the monetary poli
y sho
k is important so that pri
e adjustmentshave to be small and gradual. Our estimation approa
h di�ers from theirs and we �ndthat the most important sho
ks are those to neutral te
hnology, 
apital depre
iation,
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h lead to rapid adjustments in pri
es. Consequently, ourestimated durations of nominal 
ontra
ts are shorter than those in the literature.The last row of Figure 3 displays the marginal posterior distributions of the invest-ment te
hnology trend and the wage indexation. The distribution of the investmentte
hnology trend puts a signi�
ant amount of probability around 4%, 
onsistent withthe data on the relative pri
e of investment. The distribution of the wage indexa-tion parameter is most interesting. While the estimate is at 1.0, there is 
onsiderableun
ertainty around the wage indexation parameter so that the estimate of 1.0 is veryimpre
ise. This result implies that our estimation does not ne
essarily support a strongwage indexation. VII. E
onomi
 Impli
ationsWe now dis
uss the e
onomi
 impli
ations of our best-�t model. We �rst examine,in Se
tion VII.1, the role of the various sho
ks in driving ma
roe
onomi
 �u
tuationsthrough varian
e de
ompositions. We then present, in Se
tion VII.2, impulse responsesof several key aggregate variables to ea
h of the sho
ks that we identify as importantfor ma
roe
onomi
 �u
tuations. Finally, we provide some e
onomi
 interpretations ofthe key sour
es of sho
ks and in parti
ular, the 
apital depre
iation sho
k.VII.1. Varian
e de
ompositions. Tables 5 and 6 report varian
e de
ompositions infore
ast errors of output, investment, hours, the real wage, and in�ation under thetwo sho
k regimes at di�erent fore
asting horizons for our best-�t model. As we havedis
ussed in Se
tion VI.2, the wage markup sho
k and the depre
iation sho
k have thelargest varian
es among all eight stru
tural sho
ks. The neutral te
hnology sho
k isof 
onsiderable interest be
ause of the debate in the re
ent literature on its dynami
e�e
ts on the labor market variables (e.g., Galí (1999), Christiano, Ei
henbaum, andVigfusson (2003), Uhlig (2004), and Liu and Phaneuf (2007)).As we 
an see, 
apital depre
iation sho
ks, neutral te
hnology sho
ks, and wagemarkup sho
ks play an important role in driving business 
y
le �u
tuations underboth regimes. Taken together, these three types of sho
ks a

ount for 70 − 80% ofthe �u
tuations in output, investment, hours, and in�ation under ea
h regime for thefore
ast horizons beyond eight quarters. Monetary poli
y sho
k a

ounts for a sizablefra
tion of in�ation �u
tuations under the �rst regime but otherwise it is unimportant.The pri
e markup sho
k 
ontributes to about 15 − 30% of the real wage �u
tuationsunder both regimes. It is also somewhat important for in�ation �u
tuations under these
ond regime. The remaining three sho
ks, in
luding the government spending sho
k,
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e sho
k, and the biased te
hnology sho
k are unimportant in explainingma
roe
onomi
 �u
tuations.VII.2. Impulse responses. To gain intuition about the model's transmission me
h-anisms, we analyze impulse responses of sele
ted variables following some of the stru
-tural sho
ks. In parti
ular, we fo
us on the dynami
 e�e
ts of a wage markup sho
k,a neutral te
hnology sho
k, and a depre
iation sho
k on output, investment, the realwage, the in�ation rate, hours, and the nominal interest rate. These sho
ks, as we dis-
uss in the previous se
tion, are the most important driving sour
es of ma
roe
onomi
�u
tuations. Sin
e the impulse responses display the same patterns for both sho
kregimes ex
ept the s
aling e�e
t, we report the impulse responses only for the se
ondregime.Figure 4 displays the impulse responses following a one-standard-deviation sho
kto the 
apital depre
iation rate. The in
rease in the depre
iation rate redu
es thevalue of 
apital a

umulation and raises utilization and the rental pri
e of 
apital;thus investment falls. Sin
e the expe
ted sto
k of 
apital wealth de
lines, the negativewealth e�e
t leads to a fall in 
onsumption as well. Consequently, aggregate outputfalls. The de
line in output leads to a de
line in hours. The de
line in hours and in
onsumption lowers the marginal rate of substitution between labor and 
onsumption,so that the households' desired wage falls. Thus, the equilibrium real wage de
linesas well. The fall in the real wage redu
es the �rms' marginal 
ost so that in�ationde
lines. Through the Taylor rule, the nominal interest rate de
lines as well. As the
.90 probability error bands show, all the responses are statisti
ally signi�
ant.Figure 5 reports the impulse responses following a one-standard-deviation sho
k tothe investment-spe
i�
 te
hnology. The biased sho
k raises the e�
ien
y of investment,investment goods today be
ome 
heaper, and 
urrent 
onsumption be
omes more ex-pensive. This type of sho
k, unlike the depre
iation sho
k or the neutral te
hnologysho
k, shifts resour
es from 
onsumption to investment. Consequently, investmentrises and 
onsumption de
lines. Hours de
lines initially due to the 
ostly adjustmentin investment as well as the habit formation. After the se
ond quarter, the in
rease indemand for investment gradually leads to a rise in hours and the real wage. The risein labor hours helps produ
e more output. Utilization and the rental pri
e of 
apitalrise as well. All the responses are well estimated, judged by the .90 probability errorbands. In 
ontrast to the responses to the depre
iation sho
k, the biased te
hnologysho
k generates opposite movements in output and 
onsumption in the short run and
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onsequently its impa
t on the ma
roe
onomy is mu
h smaller (by 
omparing the s
alesin Figure 4 and those in Figure 5).Both the 
apital depre
iation sho
k and the investment-spe
i�
 te
hnology sho
kenter the intertemporal 
apital a

umulation de
ision. But we �nd that this biasedte
hnology sho
k is mu
h less important for ma
roe
onomi
 �u
tuations than the de-pre
iation sho
k. This �nding is di�erent from that in Justiniano, Primi
eri, and Tam-balotti (2008), mainly be
ause we use dire
t observations on the biased te
hnologysho
k in our estimation while they do not.Figure 6 displays the impulse responses following a one-standard-deviation sho
k tothe neutral te
hnology (i.e., the total fa
tor produ
tivity, or TFP). The positive neutralte
hnology sho
k raises output, 
onsumption, investment, utilization of 
apital, and thereal wage. All these responses are statisti
ally signi�
ant for the most part. The sho
kshould lower in�ation and, through the Taylor rule, the nominal interest rate. But theerror bands are wide so that the estimates are insigni�
ant.The neutral te
hnology sho
k leads to a statisti
ally signi�
ant de
line in hoursworked. The de
line in hours here, however, is not a dire
t 
onsequen
e of pri
esti
kiness. Even with mu
h more frequent pri
e adjustments, we �nd that the positiveneutral te
hnology sho
k leads to a de
line in hours (not reported). Instead, theinvestment adjustment 
ost (as well as the habit formation to a less extent) plays animportant role in generating the de
line in hours. If the investment adjustment 
ostparameter is small, we �nd that the model generates an in
rease in hours followingthe neutral te
hnology sho
k (not reported), regardless of whether pri
es are sti
ky ornot. Thus, our �nding does not support the view that the 
ontra
tionary e�e
t of aneutral te
hnology sho
k arises from the pri
e sti
kiness. It is 
onsistent with Fran
isand Ramey (2005), who argue that a real business 
y
le model with habit persisten
eand investment adjustment 
ost 
an generate a de
line in hours following a positiveneutral te
hnology sho
k.Figure 7 reports the impulse responses following a one-standard-deviation sho
k tothe wage markup. An in
rease in the wage markup raises the households' desired realwage. The households who 
an adjust their nominal wage raise their nominal wage.The in
rease in the nominal wage raises the �rms' marginal 
ost so that in�ation risesand real aggregate demand falls. It follows that aggregate output, investment, andhours de
line. Consequently, the rental pri
e of 
apital and utilization rise. Throughthe interest-rate rule, the rise in in�ation leads to an in
rease in the nominal interestrate. All these responses are statisti
ally signi�
ant.
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k to 
apital depre
iation? The varian
e de
ompositionsindi
ate that the TFP sho
k, the wage markup sho
k, and the depre
iation sho
k arethe most important sour
es of ma
roe
onomi
 �u
tuations. The TFP sho
k and thewage markup sho
k should be familiar to many resear
hers, but the 
apital depre
iationsho
k is new. Given its importan
e in a

ounting for the ma
roe
onomi
 �u
tuationsin our model, it is useful to provide e
onomi
 interpretations of the depre
iation sho
k.Like the TFP sho
k or any other sho
ks in this 
lass of models, the depre
iationsho
k is of redu
ed form that 
aptures some �deeper� sour
es of disturban
es and pos-sibly mi
roe
onomi
 fri
tions that distort intertemporal 
apital a

umulation de
isions.Greenwood, Her
owitz, and Krusell (1997) draw a mapping between investment-spe
i�
te
hnologi
al 
hanges and e
onomi
 depre
iation (as opposed to physi
al depre
iation)of 
apital. They note that the e
onomi
 depre
iation rate rises when the equipmentpri
e relative to the 
onsumption pri
e is expe
ted to de
line in the future. As theequipment pri
e is expe
ted to fall, existing 
apital is worth less and investors havein
entive to postpone investment to future periods, leading to a 
ontra
tion in 
urrente
onomi
 a
tivity, as does our depre
iation sho
k.Our depre
iation sho
k also 
losely resembles the 
apital quality sho
k in Justiniano,Primi
eri, and Tambalotti (2008) and Gertler and Kiyotaki (2010), who interpret their
apital quality sho
k as representing some exogenous 
hanges in the value of 
apital.One possible mi
roe
onomi
 interpretation is that a large number of goods are produ
edusing good-spe
i�
 
apital. In ea
h period, as a fra
tion of goods be
omes obsoleterandomly, the 
apital used for produ
ing those obsolete goods be
omes worthless. Inaggregate, the law of motion for 
apital would feature a depre
iation sho
k or similarlya 
apital quality sho
k to re�e
t the e
onomi
 obsoles
en
e of 
apital.Thus, we view the depre
iation sho
k as a stand in for e
onomi
 obsoles
en
e of
apital. Unlike other intertemporal wedges su
h as the investment-spe
i�
 te
hnologysho
k (or biased te
hnology sho
k), the depre
iation sho
k in our model generatespositive 
omovement between 
onsumption, investment, hours, and the real wage. Ourempiri
al results in general suggest that the depre
iation sho
k, along with the standardTFP sho
k and wage markup sho
k, is an important driving sour
e of business 
y
le�u
tuations in the U.S. e
onomy.VIII. Con
lusionWe have studied a variety of fairly large DSGE models within a uni�ed framework toreexamine the sour
es of observed ma
roe
onomi
 �u
tuations in the post-WWII U.S.
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onomy. Our e
onometri
 estimation suggests that heteros
edasti
ity in sho
k distur-ban
es are important and that 
hanges in sho
k varian
es take pla
e simultaneouslyrather than independently. Three types of sho
ks stand out as the most importantsour
es of ma
roe
onomi
 volatilities: a depre
iation sho
k that fun
tions as an in-tertemporal wedge in 
apital a

umulation, a total fa
tor produ
tivity sho
k that a
tsas an e�
ien
y wedge, and a wage markup sho
k that serves as an intratemporal laborsupply wedge. We do not �nd eviden
e of 
hanges in the in�ation target, nor do we�nd support for strong nominal rigidities in pri
es and nominal wages. These �ndingsare robust a
ross a large set of regime-swit
hing models.Appendix A. Detailed Data Des
riptionAll data are either taken dire
tly from the Haver Analyti
s Database or 
onstru
tedby Patri
k Higgins at the Federal Reserve Bank of Atlanta. The 
onstru
tion methodsdeveloped or used by Patri
k Higgins, available on request, will be brie�y des
ribedbelow.The model estimation is based on quarterly time-series observations on 8 U.S. aggre-gate variables during the sample period 1959:Q1�2007:Q4. The 8 variables are real per
apita GDP (Y Data
t ), real per 
apita 
onsumption (CData

t ), real per 
apita investment(IDatat ) in 
apital goods, real wage (wData
t ), the quarterly GDP-de�ator in�ation rate(πDatat ), per 
apita hours (LData

t ), the federal funds rate (FFRData
t ), and the inverse ofthe relative pri
e of investment (QData

t ).These series are derived from the original data in the Haver Analyti
s Database(with the relevant data 
odes provided) or from the 
onstru
ted data.
• Y Data

t = GDPHPOP25-64 .
• CData

t = (CN�USECON + CS�USECON)∗100/JGDPPOP25-64 .
• IDatat = (CD�USECON + F�USECON)∗100/JGDPPOP25-64 .
• wData

t = LXNFC�USECON/100JGDP .
• πDatat = JGDPtJGDPt−1

.
• LData

t = LXNFH�USECONPOP25-64 .
• FFRData

t = FFED�USECON
400

.
• QData

t = JGDPTornPri
eInv4707CV .The original data, the 
onstru
ted data, and their sour
es are des
ribed as follows.POP25-64: 
ivilian noninstitutional population with ages 25-64 by eliminatingbreaks in population from 10-year 
ensuses and post 2000 Ameri
an CommunitySurveys using �error of 
losure� method. This fairly simple method was used by



SOURCES OF MACROECONOMIC FLUCTUATIONS 32the Census Bureau to get a smooth population monthly population series. Thissmooth series redu
es the unusual in�uen
e of drasti
 demographi
 
hanges.GDPH: real gross domesti
 produ
t (2000 dollars). Sour
e: BEA.CN�USECON: nominal personal 
onsumption expenditures: nondurable goods.Sour
e: BEACS�USECON: nominal 
onsumption expenditures: servi
es. Sour
e: BEA.CD�USECON: nominal personal 
onsumption expenditures: durable goods.Sour
e: BEA.F�USECON: nominal private �xed investment. Sour
e: BEA.JGDP: gross domesti
 produ
t: 
hain pri
e index (2000=100). Sour
e: BEA.LXNFC�USECON: nonfarm business se
tor: 
ompensation per hour (1992=100).Sour
e: BLS.LXNFH�USECON: nonfarm business se
tor: hours of all persons (1992=100).Sour
e: BLS.FFED�USECON: annualized federal funds e�e
tive rate. Sour
e: FRB.TornPri
eInv4707CV: investment de�ator. The Tornquist pro
edure is usedto 
onstru
t this de�ator as a weighted aggregate index from the four quality-adjusted pri
e indexes: private nonresidential stru
tures investment, privateresidential investment, private nonresidential equipment & software investment,and personal 
onsumption expenditures on durable goods. Ea
h pri
e index is aweighted one from a number of individual pri
e series within this 
ategories. Forea
h individual pri
e series from 1947 to 1983, we use Gordon (1990)'s quality-adjusted pri
e index. Following Cummins and Violante (2002), we estimate ane
onometri
 model of Gordon's pri
e series as a fun
tion of a time trend and afew NIPA indi
ators (in
luding the 
urrent and lagged values of the 
orrespond-ing NIPA pri
e series); the estimated 
oe�
ients are then used to extrapolatethe quality-adjusted pri
e index for ea
h individual pri
e series for the samplefrom 1984 to 2007. These 
onstru
ted pri
e series are annual. Denton (1971)'smethod is used to interpolate these annual series on a quarterly frequen
y. TheTornquist pro
edure is then used to 
onstru
t ea
h quality-adjusted pri
e indexfrom the appropriate interpolated quarterly pri
e series.
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hwarz Criterion for the Set of DSGE ModelsModel Baseline Restri
tedDSGE-
on 5859.71 5811.14DSGE-2v 5963.03 5920.01DSGE-2
 5853.13 5805.27DSGE-2
v 5960.71 5907.00DSGE-2
2v 5958.78 5913.85DSGE-2v2v 5958.18 5912.22DSGE-3v 5950.73 5926.91Note: Column 1 lists the models studied: the DSGE model with all parameters thatare 
onstant a
ross time (DSGE-
on), the DSGE model with two regimes in sho
kvarian
es (DSGE-2v), the DSGE model with two regimes in the in�ation target only(DSGE-2
), the DSGE model with two 
ommon regimes for both sho
k varian
es andthe in�ation target (DSGE-2
v), and the DSGE model with two independent Markovpro
esses, one 
ontrolling two regimes in sho
k varian
es and the other 
ontrollingtwo regimes in the in�ation target (DSGE-2
2v), the DSGE model with twoindependent Markov pro
esses, one 
ontrolling two regimes in varian
es of twote
hnology sho
ks and the other 
ontrolling two regimes in varian
es of all the othersho
ks (DSGE-2v2v), and the DSGE model with three regimes in sho
k varian
es(DSGE-3v). Column 2 reports the posterior densities at the posterior mode, adjustedby S
hwarz 
riterion. Column 3 displays the posterior densities evaluated at theposterior modes for models with the persisten
e parameters in both the pri
e andwage markup pro
esses set to zero.Table 2. Comprehensive Measures of Model FitsModel Marginal Data DensityDSGE-
on 5741.24DSGE-2v 5832.38DSGE-2
 5739.32DSGE-2
v 5832.60DSGE-2
2v 5830.84DSGE-2v2v 5826.95DSGE-3v 5813.91



SOURCES OF MACROECONOMIC FLUCTUATIONS 34Table 3. Prior and Posterior Distributions of Stru
tural Parameters forthe model �DSGE-2v.� Prior PosteriorParameter Distribution 5% 95% Mode 5% 95%

b Beta 0.05 0.948 0.907 0.8898 0.9533

α1 Beta 0.15 0.35 0.163 0.1701 0.2162

α2 Beta 0.35 0.75 0.835 0.7348 0.8101

η Gamma 0.2 10.0 2.888 2.7151 8.3848

100(λq − 1) Gamma 0.1 1.5 1.000 0.7663 1.5001

100(λ∗ − 1) Gamma 0.1 1.5 0.237 0.0876 0.4414

100 (β−1 − 1) Beta 0.2 4.0 0.175 0.0518 0.3915

σu Gamma 0.5 3.0 2.263 1.3343 5.5196

S ′′ Gamma 0.5 5.0 2.000 1.2086 3.6145

µp − 1 Gamma 0.01 0.50 0.000 0.0001 0.0032

µw − 1 Gamma 0.01 0.50 0.060 0.0166 0.4151

4δ Beta 0.05 0.2 0.134 0.0956 0.5928

ξp Beta 0.1 0.75 0.412 0.2312 0.6202

γp Beta 0.05 0.95 0.178 0.0261 0.3390

ξw Beta 0.1 0.75 0.213 0.2482 0.6779

γw Beta 0.05 0.95 1.000 0.2275 0.9724

ρr Beta 0.05 0.948 0.816 0.7923 0.8726

φπ Gamma 0.5 5.0 1.655 1.4119 2.2899

φy Gamma 0.05 3.0 0.043 0.0241 0.1168

400 logπ∗ Gamma 1.0 8.0 2.283 1.2228 6.1118Note: �5%� and �95%� demar
ate the bounds of the 90% probability interval.�DSGE-2v� denotes the model with two regimes in sho
k varian
es.



SOURCES OF MACROECONOMIC FLUCTUATIONS 35Table 4. Prior and Posterior Distributions of Sho
k Parameters for themodel �DSGE-2v.� Prior PosteriorParameter Distribution 5% 95% Mode 5% 95%

ρp Beta 0.05 0.948 0.949 0.8524 0.9642

φp Beta 0.05 0.948 0.698 0.5009 0.8439

ρw Beta 0.05 0.948 0.999 0.8047 0.9973

φw Beta 0.05 0.948 0.749 0.6597 0.9307

ρgz Gamma 0.2 3.0 0.894 0.4555 1.3748

ρa Beta 0.05 0.948 0.107 0.0471 0.4010

ρq Beta 0.05 0.95 0.994 0.9875 0.9973

ρz Beta 0.05 0.95 0.992 0.9832 0.9984

ρd Beta 0.05 0.948 0.934 0.9172 0.9820

σr(1) Inverse Gamma 0.0005 1.0 0.004 0.0038 0.0066

σr(2) Inverse Gamma 0.0005 1.0 0.001 0.0012 0.0016

σp(1) Inverse Gamma 0.0005 1.0 0.039 0.0312 0.1426

σp(2) Inverse Gamma 0.0005 1.0 0.028 0.0211 0.0819

σw(1) Inverse Gamma 0.0005 1.0 0.255 0.2708 2.9007

σw(2) Inverse Gamma 0.0005 1.0 0.144 0.1452 1.6253

σg(1) Inverse Gamma 0.0005 1.0 0.041 0.0332 0.0566

σg(2) Inverse Gamma 0.0005 1.0 0.021 0.0192 0.0247

σz(1) Inverse Gamma 0.0005 1.0 0.010 0.0099 0.0167

σz(2) Inverse Gamma 0.0005 1.0 0.006 0.0064 0.0083

σa(1) Inverse Gamma 0.0005 1.0 0.043 0.0375 0.1371

σa(2) Inverse Gamma 0.0005 1.0 0.037 0.0337 0.0819

σq(1) Inverse Gamma 0.0005 1.0 0.007 0.0064 0.0109

σq(2) Inverse Gamma 0.0005 1.0 0.002 0.0026 0.0034

σd(1) Inverse Gamma 0.0005 1.0 0.193 0.1442 1.0925

σd(2) Inverse Gamma 0.0005 1.0 0.099 0.0702 0.4989

q11 Diri
hlet 0.589 0.991 0.807 0.6045 0.8749

q22 Diri
hlet 0.589 0.991 0.940 0.9063 0.9769Note: �5%� and �95%� demar
ate the bounds of the 90% probability interval.�DSGE-2v� denotes the model with two regimes in sho
k varian
es.
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ast Error Varian
e De
omposition: Regime IHorizon MP PM WM GS Nte
h Pref Bte
h DepOutput4Q 5.1443 4.1486 21.7621 12.8076 21.7050 1.4694 0.2106 32.75258Q 2.6618 4.1472 36.6626 6.3157 23.4311 0.5821 0.3289 25.870716Q 1.2227 2.9278 49.3857 3.4905 25.7249 0.2658 0.3942 16.588520Q 0.9756 2.5166 52.4044 2.9881 26.1211 0.2121 0.4119 14.3702Investment4Q 8.2082 5.7979 14.4682 0.7438 4.7909 0.5182 1.5667 63.90618Q 4.6292 6.2905 22.8817 1.1375 7.1533 0.7034 2.2140 54.990416Q 3.2021 5.9545 30.5410 1.2310 10.2411 0.6839 3.6330 44.513420Q 3.0318 5.7789 32.0371 1.1764 11.1034 0.6478 4.2787 41.9460Hours4Q 6.2409 4.6560 33.5268 18.7046 3.9659 2.0046 0.0815 30.81988Q 3.4031 4.8188 58.8519 10.9127 1.8040 0.9368 0.1388 19.133916Q 1.7212 3.0812 76.6957 6.8522 0.9926 0.4698 0.1114 10.076120Q 1.3929 2.5430 79.8568 6.0511 0.8162 0.3841 0.0938 8.8619Real wage4Q 6.2726 14.9794 24.5772 0.2213 34.1127 1.1717 0.2982 18.36688Q 5.6839 19.8200 12.8581 0.1161 31.7275 0.5643 0.2978 28.932116Q 3.3235 20.6873 6.9996 0.1603 36.8344 0.3290 0.3967 31.269120Q 2.8272 19.7771 5.9603 0.1726 39.2705 0.2857 0.4580 31.2486In�ation4Q 17.1586 11.2160 34.3253 1.1835 0.1755 1.1923 0.5994 34.14938Q 17.1334 9.3782 36.9222 1.1124 0.1509 1.0689 0.7772 33.456816Q 14.3407 7.9953 40.9412 0.9402 0.1589 0.9094 0.7557 33.958520Q 12.8011 7.2902 42.2714 0.8484 0.2053 0.8251 0.6802 35.0783Note: Columns 2− 9 
orrespond to the sho
ks: the monetary poli
y sho
k (MP), thepri
e markup sho
k (PM), the wage markup sho
k (WM), the government spendingsho
k (GS), the neutral te
hnology sho
k (Nte
h), the preferen
e sho
k (Pref), thebiased te
hnology sho
k (Bte
h), and the depre
iation sho
k (Dep).



SOURCES OF MACROECONOMIC FLUCTUATIONS 37Table 6. Fore
ast Error Varian
e De
omposition: Regime IIHorizon MP PM WM GS Nte
h Pref Bte
h DepOutput4Q 1.4623 6.8572 22.2957 10.9572 27.1732 3.5101 0.0921 27.65228Q 0.7325 6.6368 36.3663 5.2312 28.4007 1.3462 0.1392 21.147016Q 0.3285 4.5746 47.8282 2.8228 30.4437 0.6002 0.1629 13.239020Q 0.2611 3.9167 50.5532 2.4070 30.7917 0.4770 0.1696 11.4238Investment4Q 2.6142 10.7376 16.6082 0.7130 6.7202 1.3870 0.7675 60.45248Q 1.3975 11.0425 24.8966 1.0335 9.5109 1.7845 1.0280 49.306516Q 0.9411 10.1760 32.3509 1.0888 13.2559 1.6891 1.6423 38.855920Q 0.8887 9.8499 33.8462 1.0379 14.3342 1.5957 1.9291 36.5185Hours4Q 1.8550 8.0476 35.9182 16.7333 5.1919 5.0074 0.0373 27.20938Q 0.9744 8.0232 60.7354 9.4043 2.2750 2.2543 0.0611 16.272416Q 0.4847 5.0454 77.8436 5.8075 1.2310 1.1118 0.0482 8.427720Q 0.3918 4.1596 80.9619 5.1229 1.0112 0.9081 0.0406 7.4039Real wage4Q 1.5771 21.9006 22.2722 0.1675 37.7754 2.4758 0.1153 13.71618Q 1.4263 28.9214 11.6296 0.0877 35.0659 1.1900 0.1150 21.564116Q 0.8150 29.4979 6.1863 0.1183 39.7808 0.6781 0.1496 22.774020Q 0.6917 28.1379 5.2561 0.1271 42.3184 0.5875 0.1724 22.7089In�ation4Q 5.3155 20.2044 38.3260 1.1035 0.2395 3.1041 0.2856 31.42148Q 5.3827 17.1324 41.8078 1.0518 0.2089 2.8220 0.3755 31.218916Q 4.4593 14.4569 45.8850 0.8799 0.2176 2.3764 0.3614 31.363420Q 3.9610 13.1172 47.1437 0.7901 0.2798 2.1456 0.3237 32.2388
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TECHNICAL APPENDIX
SOURCES OF MACROECONOMIC FLUCTUATIONS: A

REGIME-SWITCHING DSGE APPROACH
(NOT INTENDED FOR PUBLICATION)

ZHENG LIU, DANIEL F. WAGGONER, AND TAO ZHA

In this appendix, we derive the optimizing decisions, describe the stationary equilib-

rium, and derive the log-linearized equilibrium conditions in the paper entitled “Sources

of Macroeconomic Fluctuations: A Regime-Switching DSGE Approach” by Liu, Wag-

goner, and Zha.

I. The optimizing decisions

I.1. Households’ optimizing decisions. Each household chooses consumption, in-

vestment, new capital stock, capacity utilization, and next-period bond to solve the

following utility maximizing problem:

Max{Ct,It,Kt,ut,Bt+1} E

∞
∑

t=0

βtAt

{

log(Ct − bCt−1) −
ψ

1 + η
Ldt+i(h)

1+η

}

(1)

subject to

P̄tCt+
P̄t
Qt

(It+a(ut)Kt−1)+EtDt,t+1Bt+1 ≤Wt(h)L
d
t (h)+P̄trktutKt−1+Πt+Bt+Tt, (2)

Kt = (1 − δt)Kt−1 +

[

1 − S

(

It
It−1

)]

It, (3)

Date: February 25, 2010.

This appendix is not intended for publication.
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Denote by µt the Lagrangian multiplier for the budget constraint (2) and by µkt the

Lagrangian multiplier for the capital accumulation equation (3). The first order con-

ditions for the utility-maximizing problem are given by

AtUct = µtP̄t, (4)

Dt,t+1 = β
µt+1

µt
, (5)

µtP̄t
Qt

= µkt {1 − S(λIt) − S ′(λIt)λIt} + βEtµk,t+1S
′(λI,t+1)(λI,t+1)

2 (6)

µkt = βEt

[

µk,t+1(1 − δt+1) + µt+1P̄t+1rk,t+1ut+1 −
µt+1P̄t+1

Qt+1
a(ut+1)

]

, (7)

rkt =
a′(ut)

Qt

, (8)

where λIt ≡ It/It−1.

Let qkt ≡ Qt
µkt

µtP̄t
denote the shadow price of capital stock (in units of investment

goods). Then, (4) and (6) imply that

1

Qt

=
qkt
Qt

{1 − S(λIt) − S ′(λIt)λIt} + βEt

qk,t+1

Qt+1

At+1Uc,t+1

AtUct
S ′(λI,t+1)(λI,t+1)

2. (9)

Thus, in the absence of adjustment cost or in the steady-state equilibrium where

S(λI) = S ′(λI) = 0, we have qkt = 1. One can interpret qkt as Tobin’s Q.

By eliminating the Lagrangian multipliers µt and µkt, the capital Euler equation (7)

can be rewritten as

qkt
Qt

= βEt

At+1Uc,t+1

AtUct

[

(1 − δt+1)
qk,t+1

Qt+1
+ rk,t+1ut+1 −

a(ut+1)

Qt+1

]

. (10)

The cost of acquiring a marginal unit of capital is qkt/Qt today (in consumption unit).

The benefit of having this extra unit of capital consists of the expected discounted

future resale value and the rental value net of utilization cost.

By eliminating the Lagrangian multiplier µt, the first-order condition with respect

to bond holding can be written as

Dt,t+1 = β
At+1Uc,t+1

AtUct

P̄t
P̄t+1

. (11)

Denote by Rt = [EtDt,t+1]
−1 the interest rate for a one-period risk-free nominal bond.

Then we have
1

Rt

= βEt

[

At+1Uc,t+1

AtUct

P̄t
P̄t+1

]

. (12)

In each period t, a fraction ξw of households re-optimize their nominal wage setting

decisions. Those households who can re-optimize wage setting chooses the nominal
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wage Wt(h) to maximize

Et

∞
∑

i=0

βiξiwAt+i[log(Ct+i − bCt+i−1) −
ψ

1 + η
Ldt+i(h)

1+η] + (13)

µt+i[Wt(h)χ
w
t,t+iL

d
t+i(h) +mt+i], (14)

where the labor demand schedule is given by

Ldt+i(h) =

(

Wt(h)χ
w
t,t+i

W̄t+i

)−θwt

Lt+i, θwt =
µwt

µwt − 1
, (15)

the term mt is given by

mt = P̄trktutKt−1 + Πt +Bt + Tt − P̄tCt −
P̄t
Qt

(It + a(ut)Kt−1) − EtDt,t+1Bt+1,

and the term χwt,t+i is given by

χwt,t+i ≡

{

Πi
k=1π

γw

t+k−1π
1−γwλ∗t,t+i if i ≥ 1

1 if i = 0,
(16)

where λ∗t,t+i ≡
λ∗t+i

λ∗t
.

The first-order condition for the wage-setting problem is given by

Et

∞
∑

i=0

(βξw)i
{

−At+iψL
d
t+i(h)

η ∂L
d
t+i(h)

∂Wt(h)
+ µt+i(1 − θw,t+i)χ

w
t,t+iL

d
t+i(h)

}

= 0, (17)

where

∂Ldt+i(h)

∂Wt(h)
= −θw,t+i

Ldt+i(h)

Wt(h)
= −

µw,t+i
µw,t+i − 1

Ldt+i(h)

Wt(h)
.

Factoring out the common terms and rearranging, we obtain

Et

∞
∑

i=0

(βξw)i
µt+i
µt

Ldt+i(h)
1

µw,t+i − 1

{

µw,t+i
ψAt+iL

d
t+i(h)

η

µt+i
− χwt,t+iWt(h)

}

= 0.

Let MRSt(h) ≡
ψAtL

d
t (h)η

µt
denote the marginal rate of substitution between leisure and

income. Then, using (11), we can rewrite the first-order condition for wage setting as

Et

∞
∑

i=0

ξiwDt,t+iL
d
t+i(h)

1

µw,t+i − 1

{

µw,t+iMRSt+i(h) − χwt,t+iWt(h)
}

= 0. (18)
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I.2. Firms’ optimizing decisions. Pricing decisions are staggered across firms. In

each period, a fraction ξp of firms can re-optimize their pricing decisions and the other

fraction 1 − ξp of firms mechanically update their prices according to the rule

Pt(j) = π
γp

t−1π
1−γpPt−1(j), (19)

If a firm can re-optimize, it chooses Pt(j) to solve

MaxPt(j) Et

∞
∑

i=0

ξipDt,t+i[Pt(j)χ
p
t,t+iY

d
t+i(j) − Vt+i(j)], (20)

subject to

Y d
t+i(j) =

(

Pt(j)χ
p
t,t+i

P̄t+i

)−
µp,t+i

µp,t+i−1

Yt+i, (21)

where Vt+i(j) is the cost function and the term χpt,t+i comes from the price-updating

rule (19) and is given by

χpt,t+i =

{

Πi
k=1π

γp

t+k−1π
1−γp if i ≥ 1

1 if i = 0.
(22)

The first order condition for the profit-maximizing problem yields the optimal pricing

rule

Et

∞
∑

i=0

ξipDt,t+iY
d
t+i(j)

1

µp,t+i − 1

[

µp,t+iΦt+i(j) − Pt(j)χ
p
t,t+i

]

= 0, (23)

where Φt+i(j) = ∂Vt+i(j)/∂Y
d
t+i(j) denotes the marginal cost function. In the absence

of markup shocks, µpt would be a constant and (23) implies that the optimal price is

a markup over an average of the marginal costs for the periods in which the price will

remain effective. Clearly, if ξp = 0 for all t, that is, if prices are perfectly flexible, then

the optimal price would be a markup over the contemporaneous marginal cost.

Cost-minimizing implies that the marginal cost function is given by

Φt(j) =

[

α̃(P̄trkt)
α1

(

W̄t

Zt

)α2
]

1

α1+α2

Yt(j)
1

α1+α2
−1
, (24)

where α̃ ≡ α−α1

1 α−α2

2 and rkt denotes the real rental rate of capital input. The condi-

tional factor demand functions are given by

W̄t = Φt(j)α2
Yt(j)

Lft (j)
, (25)

P̄trkt = Φt(j)α1
Yt(j)

Kf
t (j)

. (26)
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It follows that

W̄t

P̄trkt
=
α2

α1

Kf
t (j)

Lft (j)
, ∀j ∈ [0, 1]. (27)

I.3. Market clearing. In equilibrium, markets for bond, composite labor, capital

stock, and composite goods all clear. Bond market clearing implies that Bt = 0 for all

t. Labor market clearing implies that
∫ 1

0
Lft (j)dj = Lt. Capital market clearing implies

that
∫ 1

0
Kf
t (j)dj = utKt−1. Composite goods market clearing implies that

Ct +
1

Qt

[It + a(ut)Kt−1] +Gt = Yt, (28)

where aggregate output is related to aggregate primary factors through the aggregate

production function

GptYt = (utKt−1)
α1(ZtLt)

α2 , (29)

with Gpt ≡
∫ 1

0

(

Pt(j)
P̄t

)−
µpt

µpt−1

1

α1+α2 dj measuring the price dispersion.

II. Stationary equilibrium conditions

Since both the neutral technology and the investment-specific technology are growing

over time, we transform the appropriate variables to induce stationarity. In particular,

we denote by X̃t the stationary counterpart of the variableXt and we make the following

transformations:

Ỹt =
Yt
λ∗t
, C̃t =

Ct
λ∗t
, Ĩt =

It
Qtλ∗t

, G̃t =
Gt

λ∗t
, K̃t =

Kt

Qtλ∗t
,

w̃t =
W̄t

P̄tλ∗t
, r̃kt = rktQt, Ũct = Uctλ

∗
t ,

where the underlying trend for output is given by

λ∗t ≡ (Zα2

t Q
α1

t )
1

1−α1 .

II.1. Stationary pricing decisions. In terms of the stationary variables, we can

rewrite the optimal pricing decision (23) as

Et

∞
∑

i=0

(βξp)
iAt+iŨc,t+iỸ

d
t+i(j)

1

µp,t+i − 1
[µp,t+iφt+i(j) − p∗tZ

p
t,t+i] = 0. (30)

In this equation, Ỹ d
t+i(j) =

Y d
t+i(j)

λ∗t+i
denotes the detrended output demand; p∗t ≡ Pt(j)

P̄t

denotes the relative price for optimizing firms, which does not have a j index since all
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optimizing firms make identical pricing decisions in a symmetric equilibrium; the term

Zp
t,t+i is defined as

Zp
t,t+i =

χpt,t+i
∏i

k=1 πt+k
(31)

and finally, the term φt+i(j) ≡
Φt+i(j)

P̄t+i
denotes the real unit cost function, which is given

by

φt+i(j) =

[

α̃

(

r̃k,t+i
Qt+i

)α1
(

w̃t+i
λ∗t+i
Zt+i

)α2
]

1

α1+α2

Y d
t+i(j)

1

α1+α2
−1

= [α̃ (r̃k,t+i)
α1 (w̃t+i)

α2 ]
1

α1+α2 Ỹ d
t+i(j)

1

α1+α2
−1
. (32)

The demand schedule Ỹ d
t+i(j) for the optimizing firm j is related to the relative price

and aggregate output through

Ỹ d
t+i(j) =

[

Pt(j)χ
p
t,t+i

P̄t+i

]−θp,t+i

Ỹt+i

=

[

p∗t
P̄t
P̄t+i

χpt,t+i

]−θp,t+i

Ỹt+i

= [p∗tZ
p
t,t+i]

−θp,t+iỸt+i. (33)

Combining (32) and (33), we have

φt+i(j) = φ̃t+i[p
∗
tZ

p
t,t+i]

−θp,t+iᾱ(Ỹt+i)
ᾱ, (34)

where ᾱ ≡ 1−α1−α2

α1+α2
and

φ̃t+i ≡ [α̃ (r̃k,t+i)
α1 (w̃t+i)

α2 ]
1

α1+α2 . (35)

Given these relations, we can rewrite the optimal pricing rule (30) in terms of sta-

tionary variables

Et

∞
∑

i=0

(βξp)
iAt+iŨc,t+iỸ

d
t+i(j)

µp,t+i − 1
[µp,t+iφ̃t+i[p

∗
tZ

p
t,t+i]

−θp,t+iᾱ(Ỹt+i)
ᾱ − p∗tZ

p
t,t+i] = 0, (36)

where φ̃ is defined in (35).

II.2. Stationary wage setting decision. Using (4) and (11), we can rewrite the

optimal wage-setting decision (18) as

Et

∞
∑

i=0

(βξw)i
At+iUc,t+i
AtUct

P̄t
P̄t+i

Ldt+i(h)
1

µw,t+i − 1
[µw,t+iψ

Ldt+i(h)
η

Uc,t+i
P̄t+i −Wt(h)χ

w
t,t+i] = 0,

(37)
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where the labor demand schedule Ldt+i(h) is related to aggregate variables through

Ldt+i(h) =

[

Wt(h)χ
w
t,t+i

W̄t+i

]−θw,t+i

Lt+i (38)

=

[

w∗
t

W̄t

W̄t+i

χwt,t+i

]−θw,t+i

Lt+i (39)

=

[

w∗
t

w̃tP̄tλ
∗
t

w̃t+iP̄t+iλ∗t+i
χwt,t+i

]−θw,t+i

Lt+i (40)

=

[

w∗
t w̃t
w̃t+i

χwt,t+i
∏i

k=1 πt+kλ
∗
t,t+i

]−θw,t+i

Lt+i (41)

≡

[

w∗
t w̃t
w̃t+i

Zw
t,t+i

]−θw,t+i

Lt+i, (42)

with Zw
t,t+i defined as

Zw
t,t+i =

χwt,t+i
∏i

k=1 πt+kλ
∗
t,t+i

. (43)

Further, we can rewrite the individual optimal nominal wage Wt(h) as

Wt(h) = w∗
t W̄t = w∗

t w̃tP̄tλ
∗
t .

Given these relations, we can rewrite the wage setting rule (37) in terms of the

stationary variables. With some cancelations, we obtain

Et

∞
∑

i=0

i
∏

k=1

(βξw)i
At+iŨc,t+iL

d
t+i(h)

µw,t+i − 1

{

µw,t+iψ

[

w∗
t w̃t
w̃t+i

Zw
t,t+i

]−ηθw,t+i Lηt+i

Ũc,t+i
− w∗

t w̃tZ
w
t,t+i

}

= 0.

(44)

II.3. Other stationary equilibrium conditions. We now rewrite the rest of the

equilibrium conditions in terms of stationary variables.

First, the optimal investment decision equation (9) can be written as

1 = qkt {1 − S(λIt) − S ′(λIt)λIt} + βEtqk,t+1
λ∗tQt

λ∗t+1Qt+1

At+1Ũc,t+1

AtŨct
S ′(λI,t+1)(λI,t+1)

2,

(45)

where

λIt =
It
It−1

=
ĨtQtλ

∗
t

Ĩt−1Qt−1λ∗t−1

. (46)

Second, the capital Euler equation (10) can be written as

qkt = βEt

At+1Ũc,t+1

AtŨct

λ∗tQt

λ∗t+1Qt+1
[(1 − δt+1)qk,t+1 + r̃k,t+1ut+1 − a(ut+1)] . (47)
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Third, the optimal capacity utilization decision (8) is equivalent to

r̃kt = a′(ut). (48)

Fourth, the intertemporal bond Euler equation (12) can be written as

1

Rt

= βEt

[

λ∗t
λ∗t+1

At+1Ũc,t+1

AtŨct

1

πt+1

]

. (49)

Fifth, the law of motion for capital stock in (3) can be written as

K̃t = (1 − δt)
λ∗t−1Qt−1

λ∗tQt

K̃t−1 + [1 − S(λIt)]Ĩt. (50)

Sixth, the aggregate resource constraint is given by

C̃t + Ĩt +
λ∗t−1Qt−1

λ∗tQt

a(ut)K̃t−1 + G̃t = Ỹt. (51)

Seventh, the aggregate production function (29) can be written as

GptỸt =

[

λ∗t−1Qt−1

λ∗tQt

utK̃t−1

]α1

Lα2

t . (52)

Eighth, firms’ cost-minimizing implies that, in the stationary equilibrium, we have

w̃t
r̃kt

=
α2

α1

λ∗t−1Qt−1

λ∗tQt

utK̃t−1

Lt
. (53)

Finally, we rewrite the interest rate rule here for convenience of referencing:

Rt = κRρr

t−1

[

(

πt
π∗(st)

)φπ

Ỹ
φy

t

]1−ρr

eσrtεrt. (54)

III. Steady State

A deterministic steady state is an equilibrium in which all stochastic shocks are shut

off. Our model contains a non-standard “shock”: the Markov regime switching in mon-

etary policy regime and the shock regime. In computing the steady-state equilibrium,

we shut off all shocks, including the regime shocks. Since there is a mapping between

any finite-state Markov switching process and a vector AR(1) process (Hamilton, 1994),

shutting off the regime shocks in the steady state is equivalent to setting the innova-

tions in the AR(1) process to its unconditional mean (which is zero). In such a steady

state, all stationary variables are constant.

In the steady state, p∗ = 1 and Zp = 1, so that the price setting rule (36) reduces to

1

µp
= [α̃r̃α1

k w̃
α2]

1

α1+α2 Ỹ ᾱ. (55)

That is, the real marginal cost is constant and equals the inverse markup.
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Similarly, in the steady state, w∗ = 1 and Zw = 1, so that the wage setting rule (44)

reduces to

w̃ = µw
ψLη

Ũc
, (56)

which says that the real wage is a constant markup over the marginal rate of substitu-

tion between leisure and consumption.

Given that the steady-state markup, and thus the steady-state real marginal cost,

is a constant, the conditional factor demand function (26) for capital input together

with the capital market clearing condition imply that

r̃k =
α1

µp

Ỹ λqλ
∗

K̃
. (57)

The rest of the steady-state equilibrium conditions for the private sector come from

(45) -(53) and are summarized below:

1 = qk, (58)

λqλ
∗

β
= 1 − δ + r̃k, (59)

r̃k = a′(1), (60)

R =
λ∗

β
π, (61)

Ĩ

K̃
= 1 −

1 − δ

λqλ∗
, (62)

Ỹ = C̃ + Ĩ + G̃, (63)

Ỹ =

(

K̃

λqλ∗

)α1

Lα2 , (64)

w̃

r̃k
=

1

λqλ∗
α2

α1

K̃

L
. (65)

IV. Linearized equilibrium conditions

We now describe our procedure to linearize the stationary equilibrium conditions

around the deterministic steady state.
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IV.1. Linearizing the price setting rule. Log-linearizing the price setting rule (36)

around the steady state, we get

Et ln
∞
∑

i=0

(βξp)
i exp

{

ât+i + ûc,t+i + ŷdt+i(h) −
µp

µp − 1
µ̂p,t+i + µ̂p,t+i+

ˆ̃
φt+i − θpᾱ[p̂∗t + Ẑp

t,t+i] + ᾱŷt+i

}

≈ Et ln
∞
∑

i=0

(βξp)
i exp

{

ât+i + ûc,t+i + ŷdt+i(h) −
µp

µp − 1
µ̂p,t+i + p̂∗t + Ẑp

t,t+i

}

,

where

ˆ̃φt+i =
1

α1 + α2
[α1r̂k,t+i + α2ŵt+i]. (66)

Collecting terms to get

Et

∞
∑

i=0

(βξp)
i
{

µ̂p,t+i +
ˆ̃
φt+i − θpᾱ[p̂∗t + Ẑp

t,t+i] + ᾱŷt+i

}

≈ Et

∞
∑

i=0

(βξp)
i
{

p̂∗t + Ẑp
t,t+i

}

.

Further simplifying

1 + θpᾱ

1 − βξp
p̂∗t = Et

∞
∑

i=0

(βξp)
i
{

µ̂p,t+i +
ˆ̃φt+i + ᾱŷt+i − (1 + θpᾱ)Ẑp

t,t+i

}

.

Denote m̂ct+i ≡
ˆ̃φt+i + ᾱŷt+i. Expanding the infinite sum in the above equation, we

get

1 + ᾱθp
1 − βξp

p̂∗t = µ̂pt + m̂ct − (1 + θpᾱ)Ẑp
t,t

+ βξpEt[µ̂p,t+1 + m̂ct+1 − (1 + θpᾱ)Ẑp
t,t+1]

+ (βξp)
2Et[µ̂p,t+2 + m̂ct+2 − (1 + θpᾱ)Ẑp

t,t+2] + . . .

Forwarding this relation one period to get

1 + ᾱθp
1 − βξp

p̂∗t+1 = µ̂p,t+1 + m̂ct+1 − (1 + θpᾱ)Ẑp
t+1,t+1

+ βξpEt+1[µ̂p,t+2 + m̂ct+2 − (1 + θpᾱ)Ẑp
t+1,t+2]

+ (βξp)
2Et+1[µ̂p,t+3 + m̂ct+3 − (1 + θpᾱ)Ẑp

t+1,t+3] + . . .
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Moving the Zp
t,t+i terms to the left, we have

1 + ᾱθp
1 − βξp

p̂∗t + (1 + ᾱθp)Et[Ẑ
p
t,t + βξpẐ

p
t,t+1 + ...] = µ̂pt + m̂ct

+βξpEt[µ̂p,t+1 + m̂ct+1]

+(βξp)
2Et[µ̂p,t+2 + m̂ct+2] + . . .

= µ̂pt + m̂ct

+βξp

[

1 + ᾱθp
1 − βξp

Etp̂
∗
t+1 + (1 + ᾱθp)Et[Ẑ

p
t+1,t+1 + βξpẐ

p
t+1,t+2 + ...]

]

,

Since Ẑp
t,t = 0, we have

1 + ᾱθp
1 − βξp

p̂∗t = µ̂pt + m̂ct + βξp
1 + ᾱθp
1 − βξp

Etp̂
∗
t+1

+ (1 + ᾱθp)βξpEt

∞
∑

i=0

(βξp)
i[Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1]. (67)

Using the definition of Zp
t,t+i in (31), we obtain

Ẑp
t,t+i+1 = −[π̂t+i+1 − γpπ̂t+i + · · · + π̂t+1 − γpπ̂t]

Ẑp
t+1,t+i+1 = −[π̂t+i+1 − γpπ̂t+i + · · · + π̂t+2 − γpπ̂t+1].

Thus,

Ẑp
t+1,t+i+1 − Ẑp

t,t+i+1 = π̂t+1 − γpπ̂t,

and the Zp terms in (67) can be reduced to

∞
∑

i=0

(βξp)
i[Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1] =

1

1 − βξp
[π̂t+1 − γpπ̂t].

Substituting this result into (67), we obtain

p̂∗t =
1 − βξp
1 + ᾱθp

(µ̂pt + m̂ct) + βξpEtp̂
∗
t+1 + βξpEt[π̂t+1 − γptπ̂t]. (68)

This completes log-linearizing the optimal price setting equation. We now log-linearize

the price index relation. In an symmetric equilibrium, the price index relation is given

by

1 = ξp

[

1

πt
π
γp

t−1π
1−γp

]
1

1−µpt

+ (1 − ξp)(p
∗
t )

1

1−µpt , (69)

the linearized version of which is given by

p̂∗t =
ξp

1 − ξp
(π̂t − γpπ̂t−1). (70)
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Using (70) to substitute out the p̂∗t in (68), we obtain

ξp
1 − ξp

[π̂t − γpπ̂t−1]

=
1 − βξp
1 + ᾱθp

(µ̂pt + m̂ct)

+βξp
ξp

1 − ξp
Et[π̂t+1 − γpπ̂t] + βξpEt[π̂t+1 − γpπ̂t],

or

π̂t − γpπ̂t−1 =
κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (71)

where the real marginal cost is given by

m̂ct =
1

α1 + α2
[α1r̂k,t+i + α2ŵt+i] + ᾱŷt. (72)

and the term κp is given by

κp ≡
(1 − βξp)(1 − ξp)

ξp

This completes the derivation of the price Phillips curve.

IV.2. Linearizing the optimal wage setting rule. Log-linearizing this wage deci-

sion rule, we get

Et ln

∞
∑

i=0

(βξw)i exp

{

ât+i + ûc,t+i + l̂dt+i(h) −
µw

µw − 1
µ̂w,t+i + µ̂w,t+i−

ηθw[ŵ∗
t + ŵt − ŵt+i + Ẑw

t,t+i] + ηl̂t+i − ûc,t+i

}

≈ Et ln

∞
∑

i=0

(βξw)i exp

{

ât+i + ûc,t+i + l̂dt+i(h) −
µw

µw − 1
µ̂w,t+i + ŵ∗

t + ŵt + Ẑw
t,t+i

}

.

Collecting terms to get

Et

∞
∑

i=0

(βξw)i
{

µ̂w,t+i − ηθw[ŵ∗
t + ŵt − ŵt+i + Ẑw

t,t+i] + ηl̂t+i − ûc,t+i

}

≈ Et

∞
∑

i=0

(βξw)i
{

ŵ∗
t + ŵt + Ẑw

t,t+i

}

.

Further simplifying

1 + ηθw
1 − βξw

(ŵ∗
t + ŵt) = Et

∞
∑

i=0

(βξw)i
{

µ̂w,t+i + ηl̂t+i − ûc,t+i + ηθwŵt+i − (1 + ηθw)Ẑw
t,t+i

}

.
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Denote m̂rst+i ≡ ηl̂t+i − ûc,t+i. Expanding the infinite sum in the above equation,

we get

1 + ηθw
1 − βξw

(ŵ∗
t + ŵt) = µ̂wt + m̂rst − ŵt + (1 + ηθw)(ŵt − Ẑw

t,t)

+ βξwEt[µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)(ŵt+1 − Ẑw
t,t+1)]

+ (βξw)2Et[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)(ŵt+2 − Ẑw
t,t+2)] + . . .

Forwarding this relation one period to get

1 + ηθw
1 − βξw

(ŵ∗
t+1 + ŵt+1) = µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)(ŵt+1 − Ẑw

t+1,t+1)

+ βξwEt+1[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)(ŵt+2 − Ẑw
t+1,t+2)]

+ (βξw)2Et+1[µ̂w,t+3 + m̂rst+3 − ŵt+3 + (1 + ηθw)(ŵt+3 − Ẑw
t+1,t+3)] + . . .

Moving the Zw
t,t+i terms to the left, we have

1 + ηθw
1 − βξw

(ŵ∗
t + ŵt) + (1 + ηθw)Et[Ẑ

w
t,t + βξwẐ

w
t,t+1 + ...] = µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt

+βξwEt[µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)ŵt+1]

+(βξw)2Et[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)ŵt+2] + . . .

= µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt

+βξwEt

[

1 + ηθw
1 − βξw

(ŵ∗
t+1 + ŵt+1) + (1 + ηθw)[Ẑw

t+1,t+1 + βξwẐ
w
t+1,t+2 + ...]

]

,

Since Ẑw
t,t = 0, we have

1 + ηθw
1 − βξw

(ŵ∗
t + ŵt) = µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt + βξw

1 + ηθw
1 − βξw

Et(ŵ
∗
t+1 + ŵt+1)

+ (1 + ηθw)βξwEt

∞
∑

i=0

(βξw)i[Ẑw
t+1,t+i+1 − Ẑw

t,t+i+1]. (73)

Using the definition of Zw
t,t+i in (43), we obtain

Ẑw
t,t+i+1 = −[π̂t+i+1 − γwπ̂t+i + · · · + π̂t+1 − γwπ̂t]

Ẑw
t+1,t+i+1 = −[π̂t+i+1 − γwπ̂t+i + · · · + π̂t+2 − γwπ̂t+1].

Thus,

Ẑw
t+1,t+i+1 − Ẑw

t,t+i+1 = π̂t+1 − γwπ̂t,

and the Zw terms in (73) can be reduced to

∞
∑

i=0

(βξw)i[Ẑw
t+1,t+i+1 − Ẑw

t,t+i+1] =
1

1 − βξw
[π̂t+1 − γwπ̂t].
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Substituting this result into (73), we obtain

ŵ∗
t+ŵt =

1 − βξw
1 + ηθw

(µ̂wt+m̂rst−ŵt)+(1−βξw)ŵt+βξwEt(ŵ
∗
t+1+ŵt+1)+βξwEt[π̂t+1−γwπ̂t].

(74)

This completes log-linearizing the wage decision equation. We now log-linearize the

wage index relation. In an symmetric equilibrium, the wage index relation is given by

1 = ξw

[

w̃t−1

w̃t

1

πt
πγw

t−1π
1−γw

]
1

1−µwt

+ (1 − ξw)(w∗
t )

1

1−µwt , (75)

the linearized version of which is given by

ŵ∗
t =

ξw
1 − ξw

(ŵt − ŵt−1 + π̂t − γwπ̂t−1)]. (76)

Using (76) to substitute out the ŵ∗
t in (74), we obtain

ŵt +
ξw

1 − ξw
[ŵt − ŵt−1 + π̂t − γwπ̂t−1]

=
1 − βξw
1 + ηθw

(µ̂wt + m̂rst − ŵt) + (1 − βξw)ŵt

+βξwEt

{

ŵt+1 +
ξw

1 − ξw
[ŵt+1 − ŵt + π̂t+1 − γwπ̂t]

}

+ βξwEt[π̂t+1 − γwπ̂t],

or

ŵt − ŵt−1 + π̂t − γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt)+

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t], (77)

where κw ≡ (1−βξw)(1−ξw)
ξw

.

To help understand the economics behind this equation, we define the nominal wage

inflation as

πwt =
W̄t

W̄t−1

=
w̃tP̄tλ

∗
t

w̃t−1P̄t−1λ∗t−1

=
w̃t
w̃t−1

πtλ
∗
t−1,t. (78)

The log-linearized version is given by

π̂wt = ŵt − ŵt−1 + π̂t + ∆λ̂∗t ,

where ∆xt = xt−xt−1 is the first-difference operator and λ̂∗t = 1
1−α1

(α1q̂t+α2ẑt). Thus,

the optimal wage decision (77) is equivalent to

π̂wt − γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) + βEt(π̂

w
t+1 − γwπ̂t)

+
1

1 − α1
[α1(∆ẑt − βEt∆ẑt+1) + α2(∆q̂t − βEt∆q̂t+1)]. (79)
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This nominal-wage Phillips curve relation parallels that of the price-Phillips curve and

has similar interpretations.

IV.3. Linearizing other stationary equilibrium conditions. Taking total differ-

entiation in the investment decision equation (45) and using the steady-state conditions

that S(λI) = S ′(λI) = 0, we obtain

q̂kt = S ′′(λI)λ
2
I

[

λ̂It − βEtλ̂I,t+1

]

, (80)

which, combined with the definition of the investment growth rate

λ̂It = ∆ît +
1

1 − α1
[∆q̂t + α2∆ẑt], (81)

implies the linearized investment decision equation in the text.

Taking total differentiation in the capital Euler equation (47) and using the steady-

state conditions that q̃k = 1, u = 1, a(1) = 0, r̃k = a′(1), and β

λI
(1 − δ + r̃k) = 1, we

obtain

q̂kt = Et

{

∆ât+1 + ∆Ûc,t+1 − ∆λ̂∗t+1 − ∆q̂t+1 +
β

λI

[

(1 − δ)q̂k,t+1 − δδ̂t+1 + r̃kr̂k,t+1

]

}

,

(82)

which, upon substituting the expressions for the ∆λ̂∗t and ∆q̂t, implies the linearized

capital Euler equation in the text.

The linearized capacity utilization decision equation (48) is given by

r̂kt = σuût, (83)

where σu ≡ a′′(1)
a′(1)

is the curvature parameter for the capacity utility function a(u)

evaluated at the steady state.

The linearized intertemporal bond Euler equation (49) is given by

0 = Et

[

∆ât+1 + ∆Ûc,t+1 − ∆λ̂∗t+1 + R̂t − π̂t+1

]

, (84)

which, along with the definition of the exogenous term ∆λ̂∗t+1, implies the linearized

bond Euler equation in the text.

Log-linearize the capital law of motion (50) leads to

k̂t =
1 − δ

λI
[k̂t−1 − ∆λ̂∗t − ∆q̂t] −

δ

λI
δ̂t +

Ĩ

K̃
ît, (85)

which implies the linearized capital law of motion in the text.

To obtain the linearized resource constraint, we take total differentiation of (51) to

obtain

ŷt = cyĉt + iy ît + uyût + gyĝt, (86)
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where cy = C̃

Ỹ
, iy = Ĩ

Ỹ
, uy = r̃kK̃

Ỹ λI
, and gy = G̃

Ỹ
.

Log-linearizing the aggregate production function (52), we get

ŷt = α1[k̂t−1 + ût − ∆λ̂∗t − ∆q̂t] + α2 l̂t

= α1

[

k̂t−1 + ût −
1

1 − α1
(α2∆ẑt + ∆q̂t)

]

+ α2 l̂t. (87)

The linearized version of the factor demand relation (53) is given by

ŵt = r̂kt + k̂t−1 + ût − ∆λ̂∗t − ∆q̂t − l̂t

= r̂kt + k̂t−1 + ût −
1

1 − α1

(α2∆ẑt + ∆q̂t) − l̂t (88)

Finally, linearizing the interest rate rule (54) gives

R̂t = ρrR̂t−1 + (1 − ρr) [φπ(π̂t − π̂∗(st)) + φyŷt] + σrtεrt, (89)

where

π̂∗(st) ≡ log π∗(st) − log π.

Note that, with regime-switching inflation target, we have

π̂∗(st) = 1{st = 1}π̂∗(1) + 1{st = 2}π̂∗(2) = [π̂∗(1), π̂∗(2)]est
,

where

est
=

[

1{st = 1}

1{st = 2}

]

.

It is useful to use the result that the random vector est
follows an AR(1) process:

est
= Qest−1

+ vt,

where Q is the Markov transition matrix of the regime and Et−1vt = 0.

IV.4. Summary of linearized equilibrium conditions. We now summarize the

linearized equilibrium conditions to be used for solving and estimating the model.

These conditions are listed below.
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π̂t − γpπ̂t−1 =
κp

1 + ᾱθp

(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (90)

ŵt − ŵt−1 + π̂t − γwπ̂t−1 =
κw

1 + ηθw

(µ̂wt + m̂rst − ŵt) +

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t]. (91)

q̂kt = S′′(λI)λ
2
I

{

∆ît +
1

1 − α1

(∆q̂t + α2∆ẑt)

−βEt

[

∆ît+1 +
1

1 − α1

(∆q̂t+1 + α2∆ẑt+1)

]}

(92)

q̂kt = Et

{

∆ât+1 + ∆Ûc,t+1 −
1

1 − α1

[α2∆ẑt+1 + ∆q̂t+1]

+
β

λI

[

(1 − δ)q̂k,t+1 − δδ̂t+1 + r̃k r̂k,t+1

]

}

, (93)

r̂kt = σuût, (94)

0 = Et

[

∆ât+1 + ∆Ûc,t+1 −
1

1 − α1

[α2∆ẑt+1 + α1∆q̂t+1] + R̂t − π̂t+1

]

, (95)

k̂t =
1 − δ

λI

[

k̂t−1 −
1

1 − α1

(α2∆ẑt + ∆q̂t)

]

−
δ

λI

δ̂t +

(

1 −
1 − δ

λI

)

ît, (96)

ŷt = cy ĉt + iy ît + uyût + gyĝt, (97)

ŷt = α1

[

k̂t−1 + ût −
1

1 − α1

(α2∆ẑt + ∆q̂t)

]

+ α2 l̂t, (98)

ŵt = r̂kt + k̂t−1 + ût −
1

1 − α1

(α2∆ẑt + ∆q̂t) − l̂t, (99)

R̂t = ρrR̂t−1 + (1 − ρr)
[

φπ(π̂t − π̂∗(st)) + φy ŷt

]

+ σrtεrt, (100)

where

m̂ct =
1

α1 + α2

[α1r̂kt + α2ŵt] + ᾱŷt, (101)

m̂rst = ηl̂t − Ûct, (102)

Ûct =
βb(1 − ρa)

λ∗ − βb
ât −

λ∗

(λ∗ − b)(λ∗ − βb)
[λ∗ĉt − b(ĉt−1 − ∆λ̂∗

t )]

+
βb

(λ∗ − b)(λ∗ − βb)
[λ∗Et(ĉt+1 + ∆λ̂∗

t+1) − bĉt], (103)

π̂∗(st) = [π̂∗(1), π̂∗(2)]est
, est

= Qest−1
+ vt, (104)

(105)

and the steady-state variables are given by

r̃k =
λI

β
− (1 − δ), (106)

uy ≡
r̃kK̃

Ỹ λI

=
α1

µp

, (107)

iy = [λI − (1 − δ)]
α1

µpr̃k

, (108)

cy = 1 − iy − gy, (109)
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with λI ≡ (λqλ
α2

z )
1

1−α1 , λ∗ ≡ (λα2

z λ
α1

q )
1

1−α1 , ∆λ̂∗t ≡ 1
1−α1

(α1∆q̂t + α2∆ẑt), and gy cali-

brated to match the average ratio of government spending to real GDP.

Recall that θp ≡
µp

µp−1
, ∆xt = xt − xt−1, κp ≡

(1−βξp)(1−ξp)

ξp
, ᾱ ≡ 1−α1−α2

α1+α2
, θw ≡ µw

µw−1
,

κw ≡ (1−βξw)(1−ξw)
ξw

, and π̂wt = ŵt − ŵt−1 + π̂t + ∆λ̂∗t ,

To compute the equilibrium, we eliminate ût by using (97), leaving 10 equations

(90)-(96) and (98)-(100) with 10 variables π̂t, ŵt, ît, q̂kt, r̂kt, ĉt, k̂t, ŷt, l̂t, and R̂t. Out

of these 10 variables, we have 7 observable variables, that is, all but q̂kt, r̂kt, and k̂t, for

our estimation. We also include the biased technology shock q̂t in the set of observable

variables.

V. General setup for estimation

In this section, we describe our empirical strategy in general terms so that the method

can be applied to any state-space-form model.

Consider a regime-switching DSGE model with st following a Markov-switching pro-

cess. Let θ be a vector of all the model parameters except the transition matrix for

st. Let yt be an n × 1 vector of observable variables. In our case, n = 8. The vector

yt is connected to the state vector ft. For our regime-switching DSGE model, this

state-space representation implies a non-standard Kalman-filter problem as discussed

in Kim and Nelson (1999).

Let (Yt, θ, Q, St) be a collection of random variables where

Yt = (y1, · · · , yt) ∈ (Rn)t ,

θ = (θi)i∈H ∈ (Rr)h ,

Q = (qi,j)(i,j)∈H×H ∈ R
h2

,

St = (s0, · · · , st) ∈ H t+1,

STt+1 = (st+1, · · · , sT ) ∈ HT−t,

and H is a finite set with h elements and is usually taken to be the set {1, · · · , h}.

Because st represents a composite regime, h can be greater than the actual number

of regimes at time t. The matrix Q is the Markov transition matrix and qi,j is the

probability that st is equal to i given that st−1 is equal to j. The matrix Q is restricted

to satisfy

qi,j ≥ 0 and
∑

i∈H

qi,j = 1.

The object θ is a vector of all the model parameters except the elements in Q. The

object St represents a sequence of unobserved regimes or states. We assume that
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(Yt, θ, Q, St) has a joint density function p (Yt, θ, Q, St), where we use the Lebesgue

measure on (Rn)t × (Rr)h × R
h2

and the counting measure on H t+1. This density

satisfies the following key condition.

Condition 1.

p (st | Yt−1, θ, Q, St−1) = qst,st−1

for t > 0.

V.1. Propositions for Hamilton filter. Given p(yt | Yt−1, θ, Q, st) for all t, the

following propositions follow from Condition 1 (Hamilton, 1989; Chib, 1996; Sims,

Waggoner, and Zha, 2008).

Proposition 1.

p (st | Yt−1, θ, Q) =
∑

st−1∈H

qst,st−1
p (st−1 | Yt−1, θ, Q)

for t > 0.

Proposition 2.

p (st | Yt, θ, Q) =
p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

∑

st−1∈H
p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

for t > 0.

Proposition 3.

p (st | Yt, θ, Q, st+1) = p
(

st | YT , θ, Q, S
T
t+1

)

for 0 ≤ t < T .

V.2. Likelihood. We follow the standard assumption in the literature that the initial

data Y0 is taken as given. Using Kim and Nelson (1999)’s Kalman-filter updating

procedure, we obtain the conditional likelihood function at time t

p (yt | Yt−1, θ, Q, st) . (110)

It follows from the rules of conditioning that

p (yt, | Yt−1, θ, Q) =
∑

st∈H

p (yt, st | Yt−1, θ, Q)

=
∑

st∈H

p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q) .
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Using (110) and the above equation, one can show that the likelihood function of YT is

p (YT | θ,Q) =

T
∏

t=1

p (yt | Yt−1, θ, Q)

=
T
∏

t=1

[

∑

st∈H

p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

]

.

(111)

We assume that p (s0 | Y0, θ, Q) = 1
h

for every s0 ∈ H .1 Given this initial condition,

the likelihood function (111) can be evaluated recursively, using Propositions 1 and 2.

V.3. Posterior distributions. The prior for all the parameters is denoted by p (θ,Q),

which will be discussed further in the main text of the article. By the Bayes rule, it

follows from (111) that the posterior distribution of (θ,Q) is

p(θ,Q | YT ) ∝ p(θ,Q)p(YT | θ,Q). (112)

The posterior density p(θ,Q | YT ) is unknown and complicated; the Monte Carlo

Markov Chain (MCMC) simulation directly from this distribution can be inefficient

and problematic. One can, however, use the idea of Gibbs sampling to obtain the

empirical joint posterior density p(θ,Q, ST | YT ) by sampling alternately from the

following conditional posterior distributions:

p(ST | YT , θ, Q),

p(Q | YT , ST , θ),

p(θ | YT , Q, ST ).

One can use the Metropolis-Hastings sampler to sample from the conditional posterior

distributions p(θ | YT , Q, ST ) and p(Q | YT , ST , θ). To simulate from the distribution

p(ST | YT , θ, Q), we can see from the rules of conditioning that

p (ST | YT , θ, Q) = p (sT | YT , θ, Q) p
(

ST−1 | YT , θ, Q, S
T
T

)

= p (sT | YT , θ, Q)

T−1
∏

t=0

p
(

st | YT , θ, Q, S
T
t+1

)

(113)

1The conventional assumption for p (s0 | θ, Q) is the ergodic distribution of Q, if it exists. This

convention, however, precludes the possibility of allowing for an absorbing regime or state.
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where STt+1 = {st+1, · · · , sT}. From Proposition 3,

p
(

st | YT , θ, Q, S
T
t+1

)

= p (st | Yt, θ, Q, st+1)

=
p (st, st+1 | Yt, θ, Q)

p (st+1 | Yt, θ, Q)

=
p (st+1 | Yt, θ, Q, st) p (st | Yt, θ, Q)

p (st+1 | Yt, θ, Q)

=
qst+1,st

p (st | Yt, θ, Q)

p (st+1 | Yt, θ, Q)
.

(114)

The conditional density p
(

st | YT , ZT , θ, Q, S
T
t+1

)

is straightforward to evaluate accord-

ing to Propositions 1 and 2.

To draw ST , we use the backward recursion by drawing the last state sT from the

terminal density p(sT |YT , θ, Q) and then drawing st recursively given the path STt+1

according to (114). It can be seen from (113) that draws of ST this way come from

Pr(ST |YT , θ).

V.4. Marginal posterior density of st. The smoothed probability of st given the

values of the parameters and the data can be evaluated through backward recursions.

Starting with sT and working backward, we can calculate the probability of st condi-

tional on YT , θ, Q by using the following fact

p (st | YT , θ, Q) =
∑

st+1∈H

p (st, st+1 | YT , θ, Q)

=
∑

st+1∈H

p (st | YT , θ, Q, st+1) p (st+1 | YT , θ, Q)

where p (st | Yt, θ, Q, st+1) can be evaluated according to (114).

VI. Comparing the DSGE model with the BVAR model

We compare our models with a four-lag BVAR model estimated with log level data.

The maximum log posterior density with (Sims and Zha, 1998)’s prior is 5116.80; thus,

by the Schwarz criterion, all the DSGE models fit to the data better. The marginal data

density for this BVAR, however, is 5866.18, higher than the marginal data densities of

DSGE models.

Figure 1 plots the time series of conditional likelihoods p(yt|Yt−1, θ̂, q̂). The like-

lihoods are smaller for the DSGE model because it has fewer parameters. But the

conditional likelihoods for both DSGE and BVAR models tend to move in tandem,
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implying that the DSGE model can capture the similar dynamics to those generated

by the BVAR model.
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Figure 1. Conditional likelihoods for the DSGE-2v model and the

BVAR model.
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